U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 371 - 380 of 481 results

Gonadorelin is a synthetic decapeptide prepared using solid phase peptide synthesis. GnRH is responsible for the release of follicle stimulating hormone and leutinizing hormone from the anterior pitutitary. In the pituitary GnRH stimulates synthesis and release of FSH and LH, a process that is controlled by the frequency and amplitude of GnRH pulses, as well as the feedback of androgens and estrogens. The pulsatility of GnRH secretion has been seen in all vertebrates, and it is necessary to ensure a correct reproductive function. Thus a single hormone, GnRH, controls a complex process of follicular growth, ovulation, and corpus luteum maintenance in the female, and spermatogenesis in the male. Its short half life requires infusion pumps for its clinical use. Gonadorelin is used for the treatment of amenorrhea, delayed puberty, and infertility the administration of gonadorelin is used to simulate the physiologic release of GnRH from the hypothalamus in treatment of delayed puberty, treatment of infertility caused by hypogonadotropic hypogonadism, and induction of ovulation in those women with hypothalamic amenorrhea. This results in increased levels of pituitary gonadotropins LH and FSH, which subsequently stimulate the gonads to produce reproductive steroids.
Caspofungin is an echinocandin antifungal drug, which is approved and is sold under the brand worldwide name cancidas. Caspofungin inhibits the synthesis of beta (1,3)-D-glucan, an essential component of the cell wall of susceptible Aspergillus species and Candida species. Beta (1,3)-D-glucan is not present in mammalian cells. Cancidas is indicated for the treatment of candidemia and the following candida infections: intra-abdominal abscesses, peritonitis, and pleural space infections in adult and pediatric patients. Also is indicated for the treatment of esophageal candidiasis in adult and pediatric patients and for the treatment of invasive aspergillosis in adult and pediatric patients, but has not been studied as initial therapy for invasive aspergillosis.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cetrorelix is a synthetic decapeptide with gonadotropin-releasing hormone (GnRH) antagonistic activity. GnRH induces the production and release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the gonadotrophic cells of the anterior pituitary. Due to a positive estradiol (E2) feedback at midcycle, GnRH liberation is enhanced resulting in an LH-surge. This LH-surge induces the ovulation of the dominant follicle, resumption of oocyte meiosis and subsequently luteinization as indicated by rising progesterone levels. Cetrorelix competes with natural GnRH for binding to membrane receptors on pituitary cells and thus controls the release of LH and FSH in a dose-dependent manner. Cetrorelix binds to the gonadotropin releasing hormone receptor and acts as a potent inhibitor of gonadotropin secretion. It competes with natural GnRH for binding to membrane receptors on pituitary cells and thus controls the release of LH and FSH in a dose-dependent manner. Cetrorelix is marketed primarily under the brand name Cetrotide. Cetrotide (cetrorelix acetate for injection) is indicated for the inhibition of premature LH surges in women undergoing controlled ovarian stimulation.
Ganirelix (N-acetyl-3-(2-naphthyl)-D-alanyl-4-chloro-D-phenylalanyl-3-(3-pyridyl)-D-alanyl-L-seryl-L-tyrosyl-N9 ,N10-diethyl-D-homoarginyl-L-leucylN9 ,N10-diethyl-L-homoarginyl-L-prolyl-D-acrylamide) is a synthetic decapeptide with high antagonistic activity against naturally occurring gonadotropin-releasing hormone (GnRH). Ganirelix Acetate Injection is indicated for the inhibition of premature luteinizing hormone (LH) surges in women undergoing controlled ovarian hyperstimulation. Ganirelix is administered by a subcutaneous injection of 250 µg once per day during the mid to late follicular phase of a woman’s menstrual cycle. Treatment should start on the 5th or 6th day after the start of ovarian stimulation, and the mean duration of its use is five days. Clinical studies have shown that the most common side effect is a slight reaction at the site of injection in the form of redness, and sometimes swelling. Clinical studies have shown that, one hour after injection, the incidence of at least one moderate or severe local skin reaction per treatment cycle was 12% in 4 patients treated with Ganirelix and 25% in patients treated subcutaneously with a GnRH agonist. The local reactions generally disappear within 4 hours after administration. Other reported side effects are some that are known to be associated with ovarian hyperstimulation, including gynecological abdominal pain, headache, vaginal bleeding, nausea, and gastrointestinal abdominal pain.
Penciclovir (DENAVIR®) is a synthetic acyclic guanine derivative with antiviral activity, mainly used to treat infections from herpes simplex virus (HSV) types 1 and 2. In cells infected with HSV-1 or HSV-2, the viral thymidine kinase phosphorylates penciclovir to a monophosphate form that, in turn, is converted by cellular kinases to the active form penciclovir triphosphate. Biochemical studies demonstrate that penciclovir triphosphate inhibits HSV polymerase competitively with deoxyguanosine triphosphate. Consequently, herpes viral DNA synthesis and, therefore, replication are selectively inhibited. Famciclovir (FAMVIR®) is a prodrug form of penciclovir with improved oral bioavailability.
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ABSOLUTE)



Halobetasol Propionate is the propionate salt form of halobetasol, a synthetic corticosteroid with anti-inflammatory, antipruritic, and vasoconstrictor activities. Halobetasol, a topical steroid, diffuses across cell membranes to interact with cytoplasmic corticosteroid receptors located in both the dermal and intradermal cells, thereby activating gene expression of anti-inflammatory proteins mediated via corticosteroid receptor response element. Specifically, this agent induces phospholipase A2 inhibitory proteins, which inhibit the release of arachidonic acid, thereby inhibiting the biosynthesis of potent mediators of inflammation, such as prostaglandins and leukotrienes. As a result, halobetasol reduces edema, erythema, and pruritus through its cutaneous effects on vascular dilation and permeability. The initial interaction, however, is due to the drug binding to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes.

Showing 371 - 380 of 481 results