U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (RACEMIC)

Desmeninol is a methionine hydroxyl analog. It is used as a feed additive for livestock, especially poultry to provide an essential amino acid necessary for the nutritional well being of farm raised animals. Desmeninol (ALIMET) has 88% methionine activity and is 100 percent absorbed by the animal. The benefits of ALIMET go beyond it being a methionine source, including: Antioxidant effect in the feed; Maintained performance during heat stress; Energy savings in the feed mill; Increased feed intake.
Status:
Possibly Marketed Outside US
Source:
NCT03782155: Phase 4 Interventional Unknown status Wound Healing
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Beta-Hydroxyisovaleric acid (also known as 3-hydroxyisovaleric acid or 3HIA) is a normal human metabolite excreted in the urine. It is a byproduct of the leucine degradation pathway. Beta-Hydroxyisovaleric acid serves as a sensitive indicator of marginal biotin deficiency in humans. The variability of the proportion of leucine catabolites excreted as 3HIA suggests substantial population heterogeneity in the metabolic capacity of the 3HIA-carnitine detoxification pathway. In addition, was shown that in type II diabetic patients the catabolism of leucine was accelerated even in the absence of ketosis and that the urinary beta-hydroxyisovaleric acid concentration was a useful marker of short-term metabolic control in these patients.
Status:
Possibly Marketed Outside US
Source:
Japan:Bucladesine Sodium
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Bucladesine is a cyclic nucleotide derivative which mimics the action of endogenous cAMP and is a phosphodiesterase inhibitor. The compound is used in a wide variety of research applications because it mimics cAMP and can induce normal physiological responses when added to cells in experimental conditions. cAMP is only able to elicit minimal responses in these situations. The neurite outgrowth instigated by bucladesine in cell cultures has been shown to be enhanced by nardosinone. Recently, the effect of bucladesine as a cAMP analog has been studied on the pentylenetetrazol-induced seizure in the wild-type mice. The data showed that bucladesine (300nM/mouse) reduced the seizure latency and threshold. In addition they found that combination of bucladesine and pentoxyfillin has additive effect on seizure latency and threshold. Bucladesine is more lipophilic than cAMP and in contrast to cAMP capable of penetrating cell membranes. Bucladesine interferes with different protein kinases which are normally activated by cAMP. Bucladesine has undergone in the past clinical developments as systemic treatment for cardioprotection and as topical treatment to improve wound healing. In Japan, a bucladesine ointment (Actosin® ointment; Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan) was marketed to treat skin ulcers. Clinical studies have shown favourable effects on diabetic foot ulcers or decubitus, but the compound was later withdrawn despite good tolerability. One possible reason for the withdrawal may be the odour of the cream formulation which can be related to the hydrolytic cleavage in aqueous solutions resulting in release of butyric acid.
Status:
Possibly Marketed Outside US
Source:
Japan:Anecortave Acetate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Anecortave is a novel angiogenesis inhibitor used in the treatment of the exudative (wet) form of age-related macular degeneration. It will be marketed by Alcon as anecortave acetate (AA) for depot suspension under the trade name Retaane. In 2007 they received their letter of approval for Retaane’s indication to treat wet age-related macular degeneration (AMD), but final approval would require the completion of an additional clinical study. As a result, the Anecortave Acetate Risk-Reduction Trial (AART) was continued to be supported by Alcon. This study looked at the efficacy of Retaane to reduce the progression of the dry from of AMD to the wet-form. In 2008, Alcon Inc. announced they were terminating the development of anecortave acetate for the prevention of developing sight-threatening choroidal neovascularization secondary to age-related macular degeneration. In 2009, Alcon Inc. announced they would terminate the development of the drug for the reducing intraocular pressure associated with glaucoma. Currently, anecortave acetate is not on the market or being made for therapeutic use by Alcon Inc.[7] This could be due to the lack of efficacy of clinical trials with anecortave acetate or because of newer more efficacious products that are currently on the market. Anecortave acetate functions as an antiangiogenic agent, inhibiting blood vessel growth by decreasing extracellular protease expression and inhibiting endothelial cell migration. Its angiostatic activity does not seem to be mediated through any of the commonly known pharmacological receptors. RETAANE blocks signals from multiple growth factors because it acts downstream and independent of the initiating angiogenic stimuli and inhibits angiogenesis subsequent to the angiogenic stimulation. Recently was discovered, that phosphodiesterase 6-delta (PDE6D) was a molecular binding partner of AA and this provided insight into the role of this drug candidate in treating glaucoma.
Status:
Possibly Marketed Outside US
Source:
Japan:Calcium Hopantenate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Hopantenic acid (homopantothenic acid) is a central nervous system depressant. Formulated as the calcium salt, it is used as a pharmaceutical drug in the Russian Federation under the brand name Pantogam. In Russia it is widely used to treat a variety of neurological, psychological and psychiatric conditions. The drug has been on the pharmaceutical market since 1979 and has been proven to be safe even for children from 3 years old upwards. Hopantenic acid is a natural forming substance, has some of the lowest side effects and considered to be very safe. Use Pantogam to treat a wide variety of cognitive and nervous system disorders with combined sedative and mild stimulant effect. Hopantenic acid is not approved for use in Europe or the United States. GABA receptor agonist.
Status:
Possibly Marketed Outside US
Source:
Spectro Eczemacare Medicated Cream by Glaxosmithkline Inc [Canada]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Clobetasone is a corticosteroid used in dermatology, for treating such skin inflammation as seen in eczema, psoriasis and other forms of dermatitis, and ophthalmology. Topical clobetasone butyrate has shown minimal suppression of the Hypothalamic-pituitary-adrenal axis. It is available as clobetasone butyrate under the brand names Eumosone or Eumovate both manufactured by GlaxoSmithKline. Trimovate also contains Oxytetracycline, an antibiotic, and nystatin, an antifungal. Clobetasone butyrate is classed as a moderately potent topical corticosteroid. Clobetasone butyrate relieves the symptoms of a flare-up by reducing inflammation, itching and redness. It is not a cure for the condition, but it will help to relieve the symptoms. Although less potent topical steriods are often preferred for use in children, a short course of clobetasone butyrate may be prescribed for a child with severe eczema on the arms or legs. Short courses of clobetasone butyrate may also be prescribed for the treatment of psoriasis for areas such as the face, or the inside of elbows and behind the knees. In ophthalmology, clobetasone butyrate 0.1% eye drops have been shown to be safe and effective in the treatment of dry eyes in Sjögren's Syndrome.
Beraprost is a stable, orally active prostacyclin analogue. Beraprost acts by binding to prostacyclin membrane receptors ultimately inhibiting the release of Ca2+ from intracellular storage sites. This reduction in the influx of Ca2+ has been postulated to cause relaxation of the smooth muscle cells and vasodilation. Beraprost is indicated for the treatment of pulmonary hypertension and improvement of ulcers, pain & feeling of coldness associated with chronic arterial occlusion. In addition beraprost displays thyroid hormone receptor antagonistic properties.
Gentamicin C1 is a part of gentamicin C complex, containing gentamicin C1, gentamicin C1a, and gentamicin C2 which compose approximately 80% of gentamicin and have been found to have the highest antibacterial activity. Commercial gentamicin C is a mixture of gentamicin C1, C1a, and C2. Gentamicin C1 has a methyl group in the 6' position of the 2-amino-hexose ring and is N methylated at the same position. Gentamicin is a broad spectrum aminoglycoside antibiotic. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like gentamicin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically gentamicin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Gentamicin complex is used for treatment of serious infections caused by susceptible strains of the following microorganisms: P. aeruginosa, Proteus species (indole-positive and indole-negative), E. coli, Klebsiella-Enterobactor-Serratia species, Citrobacter species and Staphylococcus species (coagulase-positive and coagulase-negative).