{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for hydrocortisone root_notes_note in Note (approximate match)
Status:
US Approved Rx
(2003)
Source:
ANDA074732
(2003)
Source URL:
First approved in 1977
Source:
NOLVADEX by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tamoxifen (brand name Nolvadex), is selective estrogen receptor modulators (SERM) with tissue-specific activities for the treatment and prevention of estrogen receptor positive breast cancer. Tamoxifen itself is a prodrug, having relatively little affinity for its target protein, the estrogen receptor (ER). It is metabolized in the liver by the cytochrome P450 isoform CYP2D6 and CYP3A4 into active metabolites such as 4-hydroxytamoxifen (4-OHT) (afimoxifene) and N-desmethyl-4-hydroxytamoxifen (endoxifen) which have 30–100 times more affinity with the ER than tamoxifen itself. These active metabolites compete with estrogen in the body for binding to the ER. In breast tissue, 4-OHT acts as an ER antagonist so that transcription of estrogen-responsive genes is inhibited. Tamoxifen has 7% and 6% of the affinity of estradiol for the ERα and ERβ, respectively, whereas 4-OHT has 178% and 338% of the affinity of estradiol for the ERα and ERβ. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER)-positive (ER+) breast cancer in pre- and post-menopausal women. Additionally, it is the most common hormone treatment for male breast cancer. Patients with variant forms of the gene CYP2D6 (also called simply 2D6) may not receive full benefit from tamoxifen because of too slow metabolism of the tamoxifen prodrug into its active metabolites. Tamoxifen is used as a research tool to trigger tissue-specific gene expression in many conditional expression constructs in genetically modified animals including a version of the Cre-Lox recombination technique. Tamoxifen has been shown to be effective in the treatment of mania in patients with bipolar disorder by blocking protein kinase C (PKC), an enzyme that regulates neuron activity in the brain. Researchers believe PKC is over-active during the mania in bipolar patients.
Status:
US Approved Rx
(2006)
Source:
ANDA040750
(2006)
Source URL:
First approved in 1960
Source:
NDA012151
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Spironolactone is a synthetic 17-lactone steroid which is a renal competitive aldosterone antagonist in a class of pharmaceuticals called potassium-sparing diuretics. On its own, spironolactone is only a weak diuretic, but it can be combined with other diuretics. Due to its anti-androgen effect, it can also be used to treat hirsutism, and is a common component in hormone therapy for male-to-female transgendered people. Spironolactone inhibits the effect of aldosterone by competing for intracellular aldosterone receptor in the distal tubule cells. This increases the secretion of water and sodium, while decreasing the excretion of potassium. Spironolactone has a fairly slow onset of action, taking several days to develop and similarly the effect diminishes slowly. Spironolactone is a specific pharmacologic antagonist of aldosterone, acting primarily through competitive binding of receptors at the aldosterone-dependent sodium-potassium exchange site in the distal convoluted renal tubule. Spironolactone causes increased amounts of sodium and water to be excreted, while potassium is retained. Spironolactone acts both as a diuretic and as an antihypertensive drug by this mechanism. It may be given alone or with other diuretic agents which act more proximally in the renal tubule. Aldosterone interacts with a cytoplasmic mineralocorticoid receptor to enhance the expression of the Na+, K+-ATPase and the Na+ channel involved in a Na+ K+ transport in the distal tubule . Spironolactone bind to this mineralcorticoid receptor, blocking the actions of aldosterone on gene expression. Aldosterone is a hormone; its primary function is to retain sodium and excrete potassium in the kidneys. Spironolactone is used primarily to treat low-renin hypertension, hypokalemia, and Conn's syndrome.
Status:
US Approved Rx
(2004)
Source:
ANDA076553
(2004)
Source URL:
First approved in 1959
Source:
NDA011839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Medroxyprogesterone acetate (INN, USAN, BAN), also known as 17α-hydroxy-6α-methylprogesterone acetate, and commonly abbreviated as MPA, is a steroidal progestin, a synthetic variant of the human hormone progesterone. Medroxyprogesterone acetate (MPA) administered orally or parenterally in the recommended doses to women with adequate endogenous estrogen, transforms proliferative into secretory endometrium. Androgenic and anabolic effects have been noted, but the drug is apparently devoid of significant estrogenic activity. While parenterally administered MPA inhibits gonadotropin production, which in turn prevents follicular maturation and ovulation, available data indicate that this does not occur when the usually recommended oral dosage is given as single daily doses. MPA is a more potent derivative of its parent compound medroxyprogesterone (MP). While medroxyprogesterone is sometimes used as a synonym for medroxyprogesterone acetate, what is normally being administered is MPA and not MP. Used as a contraceptive and to treat secondary amenorrhea, abnormal uterine bleeding, pain associated with endometriosis, endometrial and renal cell carcinomas, paraphilia in males, GnRH-dependent forms of precocious puberty, as well as to prevent endometrial changes associated with estrogens. Progestins diffuse freely into target cells in the female reproductive tract, mammary gland, hypothalamus, and the pituitary and bind to the progesterone receptor. Once bound to the receptor, progestins slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH surge.
Status:
US Approved Rx
(1984)
Source:
NDA019125
(1984)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
US Approved Rx
(1972)
Source:
NDA016851
(1972)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fluorometholone is a glucocorticoid employed, usually as eye drops, in the treatment of allergic and inflammatory conditions of the eye. Corticosteroids such as fluorometholone inhibit the inflammatory response to a variety of inciting agents and probably delay or slow healing. There is no generally accepted explanation for the mechanism of action of ocular corticosteroids. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Corticosteroids are capable of producing a rise in intraocular pressure. In clinical studies of documented steroid-responders, fluorometholone demonstrated a significantly longer average time to produce a rise in intraocular pressure than dexamethasone phosphate.
Status:
US Approved Rx
(2024)
Source:
ANDA219251
(2024)
Source URL:
First approved in 1955
Source:
FLORINEF by CASPER PHARMA LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Fludrocortisone acetate (approved as Florinef) is a synthetic adrenocortical steroid possessing very potent mineralcorticoid properties and high glucocorticoid activity. Main indications are Partial replacement therapy for primary and secondary adrenocortical insufficiency in Addison's disease and for the treatment of salt losing adrenogenital syndrome.
Status:
US Approved Rx
(2002)
Source:
ANDA075339
(2002)
Source URL:
First approved in 1950
Source:
NDA007073
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfasalazine is an anti-inflammatory indicated for the treatment of ulcerative colitis and rheumatoid arthritis. The mode of action of Sulfasalazine or its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), is still under investigation, but may be related to the anti-inflammatory and/or immunomodulatory properties that have been observed in animal and in vitromodels, to its affinity for connective tissue, and/or to the relatively high concentration it reaches in serous fluids, the liver and intestinal walls, as demonstrated in autoradiographic studies in animals. In ulcerative colitis, clinical studies utilizing rectal administration of Sulfasalazine, SP and 5-ASA have indicated that the major therapeutic action may reside in the 5-ASA moiety. The relative contribution of the parent drug and the major metabolites in rheumatoid arthritis is unknown. Sulfasalazine is used for the treatment of Crohn's disease and rheumatoid arthritis as a second-line agent. Sulfasalazine is marketed under the trade name Azulfidine among others.
Status:
US Approved Rx
(1969)
Source:
NDA016763
(1969)
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Mafenide is a sulfonamide-type medication used as an antibiotic. It is indicated for use as an adjunctive topical antimicrobial agent to control bacterial infection when used under moist dressings over meshed autografts on excised burn wounds. Mafenide is not antagonized by pABA, serum, pus or tissue exudates, and there is no correlation between bacterial sensitivities to mafenide and to the sulfonamides. A single case of bone marrow depression and a single case of an acute attack of porphyria have been reported following therapy with mafenide acetate. Fatal hemolytic anemia with disseminated intravascular coagulation, presumably related to a glucose-6-phosphate dehydrogenase deficiency, has been reported following therapy with mafenide acetate. Other adverse reactions are: pain or burning sensation, rash and pruritis, erythema, skin maceration from prolonged wet dressings, facial edema, swelling, hives, blisters, eosinophilia.
Status:
US Approved Rx
(2022)
Source:
NDA213953
(2022)
Source URL:
First marketed in 1937
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Status:
US Approved Rx
(1977)
Source:
ANDA083220
(1977)
Source URL:
First marketed in 1931
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Estrone, one of the major mammalian estrogens, is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone. It is produced in vivo from androstenedione or from testosterone via estradiol. It is produced primarily in the ovaries, placenta, and in peripheral tissues (especially adipose tissue) through conversion of adrostenedione. Estrone may be further metabolized to 16-alpha-hydroxyestrone, which may be reduced to estriol by estradiol dehydrogenase. Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. Estrone dl-Form is a derivative of estrone. As early as 1935 extensive research programs directed toward the total synthesis of the female
sex hormone estrone were well under way. These studies have since been continued with increasing interest in laboratories all over the world. In
1942 Bachmann, Kushner and Stevenson succeeded in synthesizing a stereoisomer of the hormone,''estrone a." Using essentially the same
synthetic scheme as Bachmann, et al., Anner and
Miescher were able to isolate additional stereoisomers including dl-estrone (Estrone, (+-)-Isomer) . Six of the eight possible racemic forms, estrone, a-f, have now
been reported. Dl-Estrone (Estrone, (+-)-Isomer) is less active than Estrone.