{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "VATC|ANTI-PARKINSON DRUGS" in comments (approximate match)
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Mazaticol is an anti-acetylcholine agent used in Japan for the treatment of Parkinson's syndrome.
Status:
Possibly Marketed Outside US
Source:
Tremblex by Janssen [Switz.]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Dexetimide is a potent central and peripheral anticholinergic agent. It has a high affinity for all subtypes of muscarinic receptor and a long duration action. It forms very stable complex with mAChR. Dexetimide was used for many years in Europe for the treatment of extrapyramidal disorders. Neuroleptic-induced parkinsonian symptoms are effectively controlled by dexetimide. It is a safe, potent, and long-acting antiparkinsonian agent.
Status:
Possibly Marketed Outside US
Source:
Ciba 10870 by Ciba Pharmaceutical
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Aturban (phenglutarimide) is a neuropsychiatric agent, was used as therapeutic drug for parkinsonism. Phenglutarimide hydrochloride possesses parasympatholytic activity and has been
available as an antiparkinson agent since its preparation by Tagman, Sury & Hoffmann (1952). Phenglutarimide is a muscarinic acetylcholine receptor antagonist. There are three subtypes of enantiomers of phenglutarimide. The affinity of the enantiomers of phenglutarimide at three muscarinic receptor subtypes was examined in vitro using field-stimulated rabbit vas deferens (M1 receptors) and guinea pig atria (M2 alpha receptors) and ileum (M2 beta receptors). Extremely high stereoselectivity was observed and higher affinities (up to 6000-fold) were found for the (+)-S-enantiomer. The stereoselectivity ratios were different at the three subtypes, and the stereochemical demands made by the muscarinic receptors were most stringent at M1 receptors. (+)-(S)-Phenglutarimide was found to be a potent M1-selective antagonist (pA2 at M1 = 8.53). Its receptor selectivity profile is qualitatively similar to that of pirenzepine. (-)-(R)-Phenglutarimide showed no comparable discriminatory properties.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Piribedil is an antiparkinsonian agent which acts as D2 and D3 receptor agonist. In European countries and worldwide it is used as a monotherapy or in combination with dopatherapy for treatment of Parkinson's disease, cognitive impairment and obliterating arteriopathy.
Status:
US Approved Rx
(1998)
Source:
ANDA075321
(1998)
Source URL:
First approved in 1989
Source:
SELEGILINE HYDROCHLORIDE by NORVIUM BIOSCIENCE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Selegiline, also known as L-deprenyl, is a substituted phenethylamine, a selective, irreversible inhibitor of Type B monoamine oxidase. Selegiline is available in pill form under many brand names (Eldepryl, Carbex, Atapryl) and is used to reduce symptoms in early-stage Parkinson's disease. Selegiline delays the time point when the L-DOPA (levodopa) treatment becomes necessary from about 11 months to about 18 months after diagnosis, which is beneficial despite not being definitive evidence of neuroprotection. The rationale for adding selegiline to levodopa is to decrease the required dose of levodopa and thus reduce the motor complications of levodopa therapy. Selegiline is also delivered via a transdermal patch (brand name, Emsam) and in this form, Selegiline is used as a treatment for the major depressive disorder. Selegiline (brand name Anipryl) is also used (at extremely high dosages relative to humans) in veterinary medicine to treat the symptoms of Cushing's disease and cognitive dysfunction (Canine Cognitive Dysfunction) in dogs. Side effects of the pill form include, in decreasing order of frequency, nausea, hallucinations, confusion, depression, loss of balance, insomnia, increased involuntary movements, agitation, arrhythmia, slow heart rate, delusions, hypertension, new or increased angina pectoris, and syncope. The main side effects of the patch form for depression included application site reactions, insomnia, diarrhea, and sore throat.
Status:
US Approved Rx
(2019)
Source:
ANDA210341
(2019)
Source URL:
First approved in 1970
Source:
DOPAR by SHIRE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:
US Approved Rx
(2019)
Source:
ANDA210341
(2019)
Source URL:
First approved in 1970
Source:
DOPAR by SHIRE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:
US Approved Rx
(1982)
Source:
ANDA084779
(1982)
Source URL:
First approved in 1957
Source:
DISIPAL by 3M
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Orphenadrine is an anticholinergic drug of the ethanolamine antihistamine class used to treat muscle pain and to help with motor control in Parkinson's disease but has largely been superseded by newer drugs. Orphenadrine binds and inhibits both histamine H1 receptors and NMDA receptors. It restores the motor disturbances induced by neuroleptics, in particular, the hyperkinesia. The dopamine deficiency in the striatum increases the stimulating effects of the cholinergic system. This stimulation is counteracted by the anticholinergic effect of orphenadrine. It may have a relaxing effect on skeletal muscle spasms and it has a mood elevating effect. Orphenadrine is indicated as an adjunct to rest, physical therapy, and other measures for the relief of discomfort associated with acute painful musculoskeletal conditions. Orphenadrine is an anticholinergic with a predominantly central effect and only a weak peripheral effect. In addition, it has mild antihistaminic and local anesthetic properties. Parkinson's syndrome is the consequence of a disturbed balance between cholinergic and dopaminergic neurotransmission in the basal ganglia caused by a decrease in dopamine. Orphenadrine restores the physiological equilibrium and has a favorable effect on the rigidity and tremor of Parkinson's disease and Parkinsonian syndromes. Adverse reactions of orphenadrine citrate are mainly due to the mild anticholinergic action of orphenadrine citrate and are usually associated with higher dosage. Dryness of the mouth is usually the first adverse effect to appear. When the daily dose is increased, possible adverse effects include tachycardia, palpitation, urinary hesitancy or retention, blurred vision, dilatation of pupils, increased ocular tension, weakness, nausea, vomiting, headache, dizziness, constipation, drowsiness, hypersensitivity reactions, pruritus, hallucinations, agitation, tremor, gastric irritation and rarely urticaria and other dermatoses
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(5) cough/cold:antitussive diphenhydramine citrate
Source URL:
First approved in 1946
Source:
BENADRYL by MCNEIL CONS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Diphenhydramine is an antihistamine which is used in the combination with naproxen sodium for the relief of occasional sleeplessness when associated with minor aches and pains. Diphenhydramine has a role nighttime sleep-aid and naproxen sodium is a pain reliever. In addition, diphenhydramine used in relieving symptoms in patients with moderate-to-severe seasonal allergic rhinitis. Diphenhydramine acts as an antagonist of histamine H1 receptor. Besides, was shown potential to repurpose diphenhydramine as an anti-melanoma therapeutic agent, it induces melanoma cell apoptosis by suppressing STAT3/MCL-1 survival signaling pathway.
Status:
Possibly Marketed Outside US
Source:
PARKINSAN by Byk-Gulden Lomberg Chemische Fabrik
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Budipine is an antiparkinsonian drug, which was developed by Byk Gulden (now Takeda) for the treatment of Parkinson's disease. The drug has multiple mechanisms of action: it was found to interfere with dopamine biosynthesis, mainly by inhibiting MAO-B enzyme and stimulating aromatic L-amino acid decarboxylase. Also the drug inhibits the dopamine re-uptake and has weak affinity to NMDA and muscarinic receptors. Budipine passes the blood-brain barrier, is metabolized by hydroxylation, and is excreted by both in urine and feces within 24 h.