{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EU ORPHAN DRUG|Withdrawn|" in comments (approximate match)
Status:
US Approved Rx
(2023)
Source:
ANDA215698
(2023)
Source URL:
First approved in 2008
Source:
NDA022311
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Plerixafor is a bicyclam molecule, which has been identified as a specific antagonist of CXCR4. It had originally been developed as an inhibitor of T-tropic human immunodeficiency virus, but later demonstrated to be an effective mobilizer of hematopoietic stem cells. Plerixafor was approved by FDA for autologous transplantation (in combination with granulocyte-colony stimulating factor) in patients with non-Hodgkin's lymphoma and multiple myeloma under the name Mozobil.
Status:
US Approved Rx
(2019)
Source:
ANDA207207
(2019)
Source URL:
First approved in 2007
Source:
NDA022181
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Sapropterin dihydrochloride, the active pharmaceutical ingredient in Kuvan Tablets, is a synthetic preparation of the dihydrochloride salt of naturally occurring tetrahydrobiopterin (BH4). Kuvan is indicated to reduce blood phenylalanine (Phe) levels in patients with hyperphenylalaninemia (HPA) due to tetrahydrobiopterin- (BH4-) responsive Phenylketonuria (PKU). Kuvan is to be used in conjunction with a Phe-restricted diet. Kuvan has received orphan drug designation from both the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMEA). Kuvan is a synthetic form of BH4, the cofactor for the enzyme phenylalanine hydroxylase (PAH). PAH hydroxylates Phe through an oxidative reaction to form tyrosine. In patients with PKU, PAH activity is absent or deficient. Treatment with BH4 can activate residual PAH enzyme, improve the normal oxidative metabolism of Phe, and decrease Phe levels in some patients.
Status:
US Approved Rx
(2006)
Source:
NDA021991
(2006)
Source URL:
First approved in 2006
Source:
NDA021991
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Vorinostat (rINN) or suberoylanilide hydroxamic acid (SAHA), is a drug currently under investigation for the treatment of cutaneous T cell lymphoma (CTCL). Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2 and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations (IC50< 86 nM). These enzymes catalyze the removal of acetyl groups from the lysine residues of histones proteins. In some cancer cells, there is an overexpression of HDACs, or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. By inhibiting histone deacetylase, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. Vorinostat is used for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. Vorinostat is marketed under the name Zolinza by Merck for the treatment of cutaneous manifestations in patients with cutaneous T cell lymphoma (CTCL) when the disease persists, gets worse, or comes back during or after two systemic therapies.
Status:
US Approved Rx
(2000)
Source:
NDA020687
(2000)
Source URL:
First approved in 2000
Source:
NDA020687
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Mifepristone is a synthetic steroid with antiprogestational effects indicated for the medical termination of intrauterine pregnancy through 49 days' pregnancy. Doses of 1 mg/kg or greater of mifepristone have been shown to antagonize the endometrial and myometrial effects of progesterone in women. During pregnancy, the compound sensitizes the myometrium to the contraction-inducing activity of prostaglandins. Mifepristone also exhibits antiglucocorticoid and weak antiandrogenic activity. The activity of the glucocorticoid dexamethasone in rats was inhibited following doses of 10 to 25 mg/kg of mifepristone. Doses of 4.5 mg/kg or greater in human beings resulted in a compensatory elevation of adrenocorticotropic hormone (ACTH) and cortisol. The anti-progestational activity of mifepristone results from competitive interaction with progesterone at progesterone-receptor sites. Based on studies with various oral doses in several animal species (mouse, rat, rabbit and monkey), the compound inhibits the activity of endogenous or exogenous progesterone. The termination of pregnancy results. In the treatment of Cushing's syndrome, Mifepristone blocks the binding of cortisol to its receptor. It does not decrease cortisol production but reduces the effects of excess cortisol, such as high blood sugar levels. Mifepristone is used for the medical termination of intrauterine pregnancy through 49 days' pregnancy. Also indicated to control hyperglycemia secondary to hypercortisolism in adult patients with endogenous Cushing's syndrome who have type 2 diabetes mellitus or glucose intolerance and are not candidates for surgery or have had unsuccessful surgery.
Status:
US Approved Rx
(2023)
Source:
ANDA213267
(2023)
Source URL:
First approved in 1998
Source:
NDA020785
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Thalidomide is an immunomodulatory agent with a spectrum of activity that is not fully characterized. Thalidomide is racemic — it contains both left and right-handed isomers in equal amounts: one enantiomer is effective against morning sickness, and the other is teratogenic. The enantiomers are converted to each other in vivo. That is, if a human is given D-thalidomide or L-thalidomide, both isomers can be found in the serum. Hence, administering only one enantiomer will not prevent the teratogenic effect in humans. In patients with erythema nodosum leprosum (ENL) the mechanism of action is not fully understood. Available data from in vitro studies and preliminary clinical trials suggest that the immunologic effects of this compound can vary substantially under different conditions, but may be related to suppression of excessive tumor necrosis factor-alpha (TNF-a) production and down-modulation of selected cell surface adhesion molecules involved in leukocyte migration. For example, administration of thalidomide has been reported to decrease circulating levels of TNF-a in patients with ENL, however, it has also been shown to increase plasma TNF-a levels in HIV-seropositive patients. As a cancer treatment, the drug may act as a VEGF inhibitor. Thalidomide is used for the acute treatment of the cutaneous manifestations of moderate to severe erythema nodosum leprosum (ENL). Also for use as maintenance therapy for prevention and suppression of the cutaneous manifestations of ENL recurrence. Thalidomide is sold under the brand name Immunoprin, among others.
Status:
US Approved Rx
(2019)
Source:
ANDA208856
(2019)
Source URL:
First approved in 1998
Source:
NDA020998
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID). It works by reducing hormones that cause inflammation and pain in the body. Celecoxib is an analgesic that is FDA approved for the treatment of osteoarthritis,rheumatoid arthritis,juvenile rheumatoid arthritis, ankylosing, spondylitis, acute pain and primary dysmenorrhea. The mechanism of action of Celecoxib is believed to be due to inhibition of prostaglandin synthesis, primarily via inhibition of cyclooxygenase-2 (COX-2). Concomitant use of Celecoxib and analgesic doses of aspirin is not generally recommended. Concomitant use with Celecoxib may diminish the antihypertensive effect of ACE Inhibitors, Angiotensin Receptor Blockers (ARB), or BetaBlockers and can increase serum concentration and prolong half-life of digoxin. Common adverse reactions include hypertension, diarrhea, nausea and headache.
Status:
US Approved Rx
(2023)
Source:
ANDA216791
(2023)
Source URL:
First approved in 1997
Source:
ANTIZOL by PAR PHARM INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fomepizole (4-methylpyrazole) is a competitive ADH inhibitor. Fomepizole has been shown in vitro to block alcohol dehydrogenase enzyme activity in dog, monkey and human liver. Fomepizole is indicated as an antidote for ethylene glycol (such as antifreeze) or methanol poisoning, or for use in suspected ethylene glycol or methanol ingestion, either alone or in combination with hemodialysis. It should be given when a known or suspected toxic ethylene glycol or methanol ingestion has occurred and the patient has metabolic acidosis and elevated osmolar gap. The most frequent adverse events reported as drug-related or unknown relationship were headache (14%), nausea (11%), and dizziness, increased drowsiness, and bad taste/metallic taste. Reciprocal interactions may occur with concomitant use of fomepizole and drugs that increase or inhibit the cytochrome P450 system (e.g. phenytoin, carbamazepine, cimetidine, ketoconazole). Fomepizole has been shown to induce the expression of CYP2E1 and to inhibit its activity. These effects were enhanced in rats that had been exposed to ethanol. Fomepizole may also inhibit other CYP enzymes and therefore may alter the exposure to other drugs that are metabolised by CYP enzymes.
Status:
US Approved Rx
(2005)
Source:
NDA021660
(2005)
Source URL:
First approved in 1992
Source:
TAXOL by HQ SPCLT PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
US Approved Rx
(1998)
Source:
NDA020805
(1998)
Source URL:
First approved in 1987
Source:
NDA019537
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid) is the synthetic antimicrobial agent for oral or intravenous administration. Ciprofloxacin is a member of the fluoroquinolone class of antibacterial agents. The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination. Ciprofloxacin is used to treat a wide variety of infections, including infections of bones and joints, endocarditis, gastroenteritis, malignant otitis externa, respiratory tract infections, cellulitis, urinary tract infections, prostatitis, anthrax, and chancroid. In the United States, ciprofloxacin is pregnancy category C. This category includes drugs for which no adequate and well-controlled studies in human pregnancy exist, and for which animal studies have suggested the potential for harm to the fetus, but potential benefits may warrant use of the drug in pregnant women despite potential risks. Fluoroquinolones have been reported as present in a mother's milk and thus passed on to the nursing child. Oral and intravenous ciprofloxacin is approved by the FDA for use in children for only two indications due to the risk of permanent injury to the musculoskeletal system: Inhalational anthrax (postexposure) and Complicated urinary tract infections and pyelonephritis due to Escherichia coli.
Status:
US Approved Rx
(2006)
Source:
ANDA077743
(2006)
Source URL:
First approved in 1985
Source:
NDA018859
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ribavirin is a synthetic nucleoside analogue, which was first discovered and developed in 1970 by researchers from the International Chemical & Nuclear Corporation (ICN), today known as Valeant Pharmaceuticals. Ribavirin was initially approved for use in humans to treat pediatric respiratory syncytial virus infections (RSV). In cell cultures the inhibitory activity of ribavirin for RSV is selective. The mechanism of action is unknown. Reversal of the in vitro antiviral activity by guanosine or xanthosine suggests ribavirin may act as an analogue of these cellular metabolites. There were no other significant advancements in the treatment of hepatitis C until 1998, when the combination of ribavirin and interferon-alpha gained approval. Clinically, ribavirin showed a small, additive antiviral effect in combination with interferon, but its main effect was dose-dependent prevention of virological relapse. The mechanism by which the combination of ribavirin and an interferon product exerts its effects against the hepatitis C virus has not been fully established. However, it could be thorough the inhibition of inosine monophosphate dehydrogenase (IMPDH), which is the key step in de novo guanine synthesis, a requirement for viral replication.