U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 31 results

Status:
Possibly Marketed Outside US
Source:
Canada:SODIUM DODECYLBENZENESULFONATE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Benzenesulfonic acid (conjugate base benzenesulfonate) is the simplest aromatic sulfonic acid, that is soluble in water and ethanol, slightly soluble in benzene and insoluble in nonpolar solvents like diethyl ether. Benzenesulfonic acid was first obtained, together with diphenyl sulfone, by E. MITSCHERLICH in 1834 by heating benzene with fuming sulfuric acid. The industrially important reaction of benzenesulfonic acid with alkali hydroxide to form phenol (alkali fusion) was developed by A. WURTZ and A. KEKUL_e in 1867 and by P. O. DEGENER in 1878. Until the early 1960s benzenesulfonic acid was used chiefly in the manufacture of phenol. Benzenesulfonic acid has the characteristic reactions of a strong aromatic sulfonic acid. Acid hydrolysis at 175 C splits it into benzene and sulfuric acid. Additional sulfonation with fuming sulfuric acid gives 1,3-benzenedisulfonic acid, which reacts further to 1,3,5-benzenetrisulfonic acid, and also diphenyl sulfone disulfonic acid. Benzenesulfonic acid is used as an acid catalyst. The sodium salt is used to standardize dyes. A variety of pharmaceutical drugs are prepared as benzenesulfonate salts and are known as besilates (INN) or besylates (USAN).
mixture
Status:
First approved in 1983

Class:
MIXTURE



Atracurium is an intermediate-duration, nondepolarizing, skeletal muscle relaxant for intravenous administration. It is used, as an adjunct to general anesthesia, to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. Most adverse reactions were suggestive of histamine release. Common side effects include flushing of the skin and low blood pressure. Drugs which may enhance the neuromuscular blocking action of atracurium include: enflurane; isoflurane; halothane; certain antibiotics, especially the aminoglycosides and polymyxins; lithium; magnesium salts; procainamide; and quinidine.
Cisatracurium is a cis-cis isomer of atracurium and five time as potent as atracurium. The drug is approved by FDA and marketed under the name Nimbex. It is indicated as an adjunct to general anesthesia, to facilitate tracheal intubation, and to provide skeletal muscle relaxation due to its antagonistic properties toward nicotinic acetylcholine receptors.
Cisatracurium is a cis-cis isomer of atracurium and five time as potent as atracurium. The drug is approved by FDA and marketed under the name Nimbex. It is indicated as an adjunct to general anesthesia, to facilitate tracheal intubation, and to provide skeletal muscle relaxation due to its antagonistic properties toward nicotinic acetylcholine receptors.
Cisatracurium is a cis-cis isomer of atracurium and five time as potent as atracurium. The drug is approved by FDA and marketed under the name Nimbex. It is indicated as an adjunct to general anesthesia, to facilitate tracheal intubation, and to provide skeletal muscle relaxation due to its antagonistic properties toward nicotinic acetylcholine receptors.

Showing 21 - 30 of 31 results