U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ACHIRAL
Molecular Formula C6H6O3S
Molecular Weight 158.175
Optical Activity NONE
Defined Stereocenters 0 / 0
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of BENZENESULFONIC ACID

SMILES

OS(=O)(=O)C1=CC=CC=C1

InChI

InChIKey=SRSXLGNVWSONIS-UHFFFAOYSA-N
InChI=1S/C6H6O3S/c7-10(8,9)6-4-2-1-3-5-6/h1-5H,(H,7,8,9)

HIDE SMILES / InChI

Description

Benzenesulfonic acid (conjugate base benzenesulfonate) is the simplest aromatic sulfonic acid, that is soluble in water and ethanol, slightly soluble in benzene and insoluble in nonpolar solvents like diethyl ether. Benzenesulfonic acid was first obtained, together with diphenyl sulfone, by E. MITSCHERLICH in 1834 by heating benzene with fuming sulfuric acid. The industrially important reaction of benzenesulfonic acid with alkali hydroxide to form phenol (alkali fusion) was developed by A. WURTZ and A. KEKUL_e in 1867 and by P. O. DEGENER in 1878. Until the early 1960s benzenesulfonic acid was used chiefly in the manufacture of phenol. Benzenesulfonic acid has the characteristic reactions of a strong aromatic sulfonic acid. Acid hydrolysis at 175 C splits it into benzene and sulfuric acid. Additional sulfonation with fuming sulfuric acid gives 1,3-benzenedisulfonic acid, which reacts further to 1,3,5-benzenetrisulfonic acid, and also diphenyl sulfone disulfonic acid. Benzenesulfonic acid is used as an acid catalyst. The sodium salt is used to standardize dyes. A variety of pharmaceutical drugs are prepared as benzenesulfonate salts and are known as besilates (INN) or besylates (USAN).

Originator

Approval Year

Conditions

ConditionModalityTargetsHighest PhaseProduct

PubMed

Patents

Sample Use Guides

In Vivo Use Guide
Rat LD50 (oral) 890 mg/kg. Wild bird LD50 (oral) 75 mg/kg
Route of Administration: Oral
In Vitro Use Guide
Biodegradation had been quantified in aqueous medium and P. fluorescens in agitated flasks experiments without sand matrix. The concentration of the MCs were determined every day (t=6 d for phenol, salicylic acid, and benzenesulfonic acid). Batch experiments were conducted in wide-neck bottles (Vinner = 250 ml) with defined moisture contents. The moisture content (θ) is the ratio between the volume of water and the total volume of the sample. To prevent unwanted strains from being included, the empty bottles were sterilized for t=20 min (T=121 °C) and the experimentswere done on a sterile bench. The sterilized bottles were filled with 40 g of sterilized sand (t = 20 min, T = 121 °C) each. The substrate solution was prepared by adding c0 (MC) = 0.5 mmol/l and nutrient solution to V = 1 l of deionized water. Each MC was investigated individually. In addition, the calculated volume of P. fluorescens solution was added. Five different moisture contents were used (θ = 5, 10, 24, 37 and 42%) by adding Vsubstrate = 1.3 to 12 ml (c0 (MC) = 0.5 mmol/l), inorganic medium and P. fluorescens (OD600=0.1, 7 × 107 cells/ml). The bottles were closed with a rubber stopper to prevent ambient air from entering and they were shaken slightly in the dark obtain a fairly homogeneous substrate distribution. The temperature was kept at T = 22 ±1 °C. The oxygen concentration was measured by sensor spots fixed to the inner glass surface of the bottles. After defined time periods (t=6 d or 60 d), 50 ml of deionized water (Millipore) were added with a dispenser and allwas shaken for t=1 min. The supernatantwas filtered (pore size 0.4 μm, polycarbonate) and prepared for analysis. Each bottle was “sacrificed” and each supernatant was analyzed once. For example, a triplicate experiment with five differentmoisture contents and a maximum reaction time of three days with daily control needed 45 bottles (3 × 5 × 3).