U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 28 of 28 results

Acriflavine (ACF) is a topical antiseptic. The hydrochloride form is more irritating than the neutral form. It is derived from acridine. Commercial preparations are often mixtures with proflavine. Acriflavine was developed in 1912 by Paul Ehrlich, a German medical researcher, and was used during the First World War against sleeping sickness. ACF has known trypanocidal, antibacterial, and antiviral activities. Effects of ACF on cancer cells were first reported 50 years ago. By present time was demonstrated that ACF a drug, that binds directly to HIF-1 alpha and HIF-2 alpha and inhibits HIF-1 dimerization and transcriptional activity and thus has potent inhibitory effects on tumor growth and vascularization. Also Acriflavine in combination with 3,6-diaminoacridine (proflavine) could prove to be a potential antimalarial drug and its pharmacological action can be due to inhibition of gyrase activity. This is achieved through interaction of the ACF with the DNA substrate. This interaction may lead to conformation change in DNA unsuitable for binding of gyrase with DNA.
Status:
Investigational
Source:
NCT03534063: Not Applicable Interventional Completed Pain, Postoperative
(2018)
Source URL:

Class:
PROTEIN

Status:
Investigational
Source:
NCT03333824: Phase 1 Interventional Completed Solid Tumours
(2017)
Source URL:

Class:
PROTEIN

Asenapine is an antipsychotic drug. The mechanism of action of asenapine, as with other drugs having efficacy in schizophrenia and bipolar disorder, is unknown. Asenapine exhibits high affinity for serotonin 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5, 5-HT6, and 5-HT7 receptors, dopamine D2, D3, D4, and D1 receptors, α1 and α2-adrenergic receptors, and histamine H1 receptors, and moderate affinity for H2 receptors. In in vitro assays asenapine acts as an antagonist at these receptors. It has been suggested that the efficacy of asenapine in schizophrenia is mediated through a combination of antagonist activity at D2 and 5-HT2A receptors. Asenapine is approved by the FDA for the acute treatment of schizophrenia in adults and for the acute treatment of manic or mixed episodes associated with bipolar I disorder, with or without psychotic features, in adults.