U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 211 - 220 of 31824 results

Meclofenamic acid, used as Meclofenamate sodium, is a non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. Meclofenamate sodium capsules are indicated for the relief of mild to moderate pain, for the treatment of primary dysmenorrhea and for the treatment of idiopathic heavy menstrual blood loss; for relief of signs and symptoms of juvenile arthritis; so as for relief of the signs and symptoms of rheumatoid arthritis; For relief of the signs and symptoms of osteoarthritis. The mode of action, like that of other nonsteroidal anti-inflammatory agents, is not known. Therapeutic action does not result from pituitary-adrenal stimulation. In animal studies, meclofenamate sodium was found to inhibit prostaglandin synthesis and to compete for binding at the prostaglandin receptor site. In vitro, meclofenamate sodium was found to be an inhibitor of human leukocyte 5-lipoxygenase activity. These properties may be responsible for the anti-inflammatory action of meclofenamate sodium. There is no evidence that meclofenamate sodium alters the course of the underlying disease.
Cefaclor is a semisynthetic cephalosporin antibiotic for oral administration. As with other cephalosporins, the bactericidal action of Cefaclor results from inhibition of cell-wall synthesis. Cefaclor is indicated in the treatment of the following infections when caused by susceptible strains of the designated microorganisms: Otitis media caused by Streptococcus pneumoniae, Haemophilus influenzae, staphylococci, and Streptococcus pyogenes; Lower respiratory tract infections, including pneumonia, caused by Streptococcus pneumoniae, Haemophilus influenzae, and Streptococcus pyogenes; Pharyngitis and Tonsillitis, caused by Streptococcus pyogenes; Urinary tract infections, including pyelonephritis and cystitis, caused by Escherichia coli, Proteus mirabilis, Klebsiella spp., and coagulase-negative staphylococci; Skin and skin structure infections caused by Staphylococcus aureus and Streptococcus pyogenes. Adverse effects considered to be related to therapy with cefaclor are: Hypersensitivity reactions, Rarely, reversible hyperactivity, agitation, nervousness, insomnia, confusion, hypertonia, dizziness, hallucinations, somnolence and diarrhea. Patients receiving Cefaclor may show a false-positive reaction for glucose in the urine with tests that use Benedict's and Fehling's solutions and also with Clinitest® tablets. There have been reports of increased anticoagulant effect when Cefaclor and oral anticoagulants were administered concomitantly.
Carboprost is an analogue of naturally occurring prostaglandin F2alpha. Administered intramuscularly carboprost stimulates in the gravid uterus myometrial contractions similar to labor contractions at the end of a full term pregnancy. It is indicated for aborting pregnancy between the 13th and 20th weeks of gestation as calculated from the first day of the last normal menstrual period and for the treatment of postpartum hemorrhage due to uterine atony, which has not responded to conventional methods of management. The most frequent adverse reactions observed are related to its contractile effect on smooth muscle: vomiting, diarrhea, nausea, fever and flushing. Carboprost may augment the activity of other oxytocic agents. Concomitant use with other oxytocic agents is not recommended.
Cefoxitin is a cephamycin antibiotic often grouped with the second-generation cephalosporins. It is active against a broad range of gram-negative bacteria including anaerobes. The methoxy group in the 7a position provides cefoxitin with a high degree of stability in the presence of beta-lactamases, both penicillinases and cephalosporinases, of gram-negative bacteria. The bactericidal action of cefoxitin results from inhibition of cell wall synthesis.
Sulindac is a nonsteroidal anti-inflammatory agent (NSAIA) of the arylalkanoic acid class that is marketed in the U.S. by Merck as Clinoril. Like other NSAIAs, it may be used in the treatment of acute or chronic inflammatory conditions. Sulindac is a prodrug, derived from sulfinylindene, that is converted in vivo to an active sulfide compound by liver enzymes. The sulfide metabolite then undergoes enterohepatic circulation; it is excreted in the bile and then reabsorbed from the intestine. This is thought to help maintain constant blood levels with reduced gastrointestinal side effects. Some studies have shown sulindac to be relatively less irritating to the stomach than other NSAIA's except for drugs of the cyclooxygenase-2 (COX-2) inhibitor class. The exact mechanism of its NSAIA properties is unknown, but it is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin synthesis.
Status:
First approved in 1978
Source:
Duracef by Mead Johnson
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefadroxil is a new semisynthetic cephalosporin with a broad antibacterial spectrum and a high chemotherapeutic potential when administered orally. Many studies have established the efficacy of the administration of once- or twice-daily cefadroxil in the management of infections in the respiratory tract, urinary tract, skin and soft tissues, and bones and joints.
Desmopressin is a chemical that is similar to Antidiuretic Hormone (ADH), which is found naturally in the body and is produced by the hypothalamus and stored, in the posterior pituitary gland. The main function of ADH is to regulate extracellular fluid volume in the body. ADH secretion is stimulated by angiotensin II, linking it to the renin-angiotensin-aldosterone system (RAAS). ADH stimulates water reabsorption in the kidneys by causing the insertion of aquaporin-2 channels on the apical surface of cells of the distal convoluted tubule and collecting tubules. Desmopressin also causes vasoconstriction through its action on vascular smooth muscle cells of the collecting tubules. It increases urine concentration and decreases urine production. Acetate salt of desmopressin is sold under brand name DDAVP with different formulations: DDAVP Nasal Spray is indicated as antidiuretic replacement therapy in the management of central cranial diabetes insipidus and for management of the temporary polyuria and polydipsia following head trauma or surgery in the pituitary region. It is ineffective for the treatment of nephrogenic diabetes insipidus. DDAVP Injection is indicated for patients with hemophilia A with factor VIII coagulant activity levels greater than 5% and is indicated for patients with mild to moderate classic von Willebrand’s disease (Type I) with factor VIII levels greater than 5%. It was suggested that desmopressin-induced relaxation was mediated by a receptor subtype sharing both V1A and V2 pharmacological profiles.
Natamycin (Pimaricin, Pimafucin, Natadrops, Natacyn) is a polyene antifungal agent originally isolated from Streptomyces natalensis found in a soil sample from Natal, South Africa. Natamycin was discovered in DSM laboratories in 1955. Similar to other polyenes, natamycin binds to ergosterol in the fungal cell membrane. Natamycin blocks fungal growth by binding specifically to ergosterol with¬out permeabilizing the membrane where it inhibits vacuole fusion at the priming phase and interferes with membrane protein functions. Natamycin is also used in the food industry as an effective preservative. Natamycin is active against most Candida spp. Aspergillus spp., Fusarium spp. and other rarer fungi that cause keratitis. Secondary or acquired resistance is probably rare, but not extensively studied. Natamycin is not effective in vitro against gram-positive or gram-negative bacteria. Topical administration appears to produce effective concentrations of natamycin within the corneal stroma but not in intraocular fluid. Natamycin is poorly soluble in water and not absorbed through the skin or mucous membranes, including the vagina. Very little is absorbed through the gastrointestinal tract. After ocular application, therapeutic concentrations are present within the infected cornea, but not in intra-ocular fluid Natamycin may cause some irritation on skin or mucous membranes

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Difenoxin is a 4-phenylpiperidine which is closely related to the opioid analgesic meperidine. Difenoxin alone is a USA Schedule I controlled drug, as it may be habit forming. However, it is listed as a Schedule IV controlled drug if combined with atropine, which is added to decrease deliberate misuse. Motofen(R) is a brand mixture which combines atropine sulfate and difenoxin hydrochloride. It is approved by the FDA to treat acute and chronic diarrhea. Difenoxin is an active metabolite of the anti-diarrheal drug, diphenoxylate, which is also used in combination with atropine in the brand mixture Lomotil(R). It works mostly in the periphery and activates opioid receptors in the intestine rather than the central nervous system (CNS). Difenoxin is also closely related to loperamide, but unlike loperamide it is still capable of crossing the blood brain barrier to produce weak sedative and analgesic effects. However, the antidiarrheal potency of difenoxin is much greater than its CNS effects, which makes it an attractive alternative to other opioids. Motofen(R) is a combination of atropine, an anticholinergic drug, and difenoxin, an antidiarrheal drug. It has been used in many countries for many years as a second line opioid-agonist antidiarrheal, which exists an intermediate between loperamide and paragoric. Diarrhea which is a result of cyclic or diarrhea predominant Inflammatory Bowel Syndrome may not be treated effectively with difenoxin, diphenoxylate, or loperamide. As such, diarrhea and cramping which does not respond to non-centrally acting derivatives or belladonna derivatives such as atropine are often treated with conservative doses of codeine. In patients with acute ulcerative colitis, as induction of toxic megacolon is possible, and thus use of Motofen(R) is cautioned. Motofen(R) has been assigned pregnancy category C by the FDA, and is to be used only when the potential benefits outweigh the potential risk to the fetus. The safety of use during lactation is unknown and thus not recommended. Each five-sided dye free MOTOFEN® tablet contains: 1 mg of difenoxin (equivalent to 1.09 mg of difenoxin hydrochloride) and 0.025 mg of atropine sulfate (equivalent to 0.01 mg of atropine). Difenoxin acts as an antidiarrheal by activating peripheral opioid receptors in the small intestine and thereby inhibiting peristalsis. However, research has suggested that non-opioid receptor pathways exist. This would explain the potent antidiarrheal effects of difenoxin despite only limited opioid action.
Status:
First approved in 1977

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Baclofen (brand names Kemstro, Lioresal, and Gablofen) is a derivative of gamma-aminobutyric acid (GABA). Baclofen is a muscle relaxer and an antispastic agent and is used to treat muscle symptoms caused by multiple sclerosis, including spasm, pain, and stiffness. It is primarily used to treat spasticity and is under investigation for the treatment of alcoholism. Although baclofen is an analog of the putative inhibitory neurotransmitter gamma-aminobutyric acid (GABA), there is no conclusive evidence that actions on GABA systems are involved in the production of its clinical effects. Baclofen is rapidly and extensively absorbed and eliminated. Absorption may be dose-dependent, being reduced with increasing doses. Baclofen is excreted primarily by the kidney in unchanged form and there is relatively large intersubjective variation in absorption and/or elimination. Baclofen is a direct agonist at GABA-B receptors. The precise mechanism of action of baclofen is not fully known. It is capable of inhibiting both monosynaptic and polysynaptic reflexes at the spinal level, possibly by hyperpolarization of afferent terminals, although actions at supraspinal sites may also occur and contribute to its clinical effect.