U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 28 results

Status:
US Previously Marketed
Source:
GUANIDINE HYDROCHLORIDE by MERCK SHARP DOHME
(1939)
Source URL:
First approved in 1939
Source:
GUANIDINE HYDROCHLORIDE by MERCK SHARP DOHME
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Guanidine is a small basic compound. Guanidine stimulates the neuromuscular junction presynaptically by inhibiting voltage-gated potassium (Kv) channels, leading to the enhanced release of acetylcholine in the synaptic cleft. This stimulatory effect of guanidine underlies its use in the therapy for the neuromuscular diseases. The hydrochloride salt of guanidine was approved by FDA for the reduction of the symptoms of muscle weakness and easy fatigability associated with the myasthenic syndrome of Eaton-Lambert.
Tizanidine is a short-acting drug for the management of spasticity. Tizanidine is an agonist at a2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons. Side effects include dizziness, drowsiness, weakness, nervousness, hallucinations, depression, vomiting, dry mouth, constipation, diarrhea, stomach pain, heartburn, increased muscle spasms, back pain, rash, sweating, and a tingling sensation in the arms, legs, hands, and feet.
Brimonidine reduces the amount of fluid in the eye, which decreases pressure inside the eye. Brimonidine ophthalmic (for the eyes) is used to treat open-angle glaucoma or ocular hypertension (high pressure inside the eye). Brimonidine is an alpha adrenergic receptor agonist (primarily alpha-2). Fluorophotometric studies in animals and humans suggest that Brimonidine has a dual mechanism of action by reducing aqueous humor production and increasing uveoscleral outflow. Adverse reactions occurring in approximately 10­20% of the subjects receiving brimonidine ophthalmic solution (0.1-0.2%) included: allergic conjunctivitis, conjunctival hyperemia, and eye pruritus. Because Brimonidine may reduce blood pressure, caution in using drugs such as antihypertensives and/or cardiac glycosides with Brimonidine is advised.
Status:
First approved in 1959
Source:
Hibitane by Ayerst
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
First approved in 1959
Source:
Hibitane by Ayerst
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
First approved in 1959
Source:
Hibitane by Ayerst
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
First approved in 1947
Source:
Chloroguanide by Squibb
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Proguanil is a prophylactic antimalarial drug, which works by stopping the malaria parasite, Plasmodium falciparum and Plasmodium vivax, from reproducing once it is in the red blood cells. Proguanil in combination with atovaquone are marked under the brand name malarone, which is indicated for the treatment of acute, uncomplicated P. falciparum malaria and for the prophylaxis of Plasmodium falciparum malaria, including in areas where chloroquine resistance has been reported. Atovaquone and proguanil, interfere with 2 different pathways involved in the biosynthesis of pyrimidines required for nucleic acid replication. Atovaquone is a selective inhibitor of parasite mitochondrial electron transport. Proguanil hydrochloride primarily exerts its effect by means of the metabolite cycloguanil, a dihydrofolate reductase inhibitor. Inhibition of dihydrofolate reductase in the malaria parasite disrupts deoxythymidylate synthesis. Recently were done experiments, which confirmed the hypothesis that proguanil might act on another target than dihydrofolate reductase. In addition, was made conclusion, that effectiveness of malarone was due to the synergism between atovaquone and proguanil and may not require the presence of cycloguanil.

Showing 11 - 20 of 28 results