{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for m root_relationships_comments in Relationship Comments (approximate match)
Status:
US Approved Rx
(2011)
Source:
ANDA200503
(2011)
Source URL:
First approved in 1995
Source:
ULTRAM by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Tramadol (sold under the brand name Ultram) is a narcotic analgesic proposed for moderate to severe pain. Tramadol and its O-desmethyl metabolite (M1) are selective, weak OP3-receptor agonists. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. The analgesic properties of Tramadol can be attributed to norepinephrine and serotonin reuptake blockade in the CNS, which inhibits pain transmission in the spinal cord. The (+) enantiomer has the higher affinity for the OP3 receptor and preferentially inhibits serotonin uptake and enhances serotonin release. The (-) enantiomer preferentially inhibits norepinephrine reuptake by stimulating alpha(2)-adrenergic receptors. Tramadol is used primarily to treat mild-severe pain, both acute and chronic. Its analgesic effects take about one hour to come into effect and 2 h to 4 h to peak after oral administration with an immediate-release formulation. On a dose-by-dose basis, tramadol has about one-tenth the potency of morphine and is approximately equally potent when compared to pethidine and codeine. The most common adverse effects of tramadol include nausea, dizziness, dry mouth, indigestion, abdominal pain, vertigo, vomiting, constipation, drowsiness, and headache. Compared to other opioids, respiratory depression and constipation are considered less of a problem with tramadol.
Status:
US Approved Rx
(1997)
Source:
ANDA074921
(1997)
Source URL:
First approved in 1990
Source:
PROSOM by ABBOTT
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Estazolam, a triazolobenzodiazepine derivative, is an oral hypnotic agent with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Used for the short-term management of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Marketed under the brand names ProSom, Eurodin.
Status:
Investigational
Source:
NCT02288481: Phase 1 Interventional Completed Tuberculosis
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
TBA-354, also known as SN31354, is a potent anti-tuberculosis drug candidate. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. TBA-354 is a promising next-generation nitroimidazole antitubercular agent. TBA-354 emerged from studies designed to identify a next generation nitroimidazole for TB. TB Alliance conducted the studies in collaboration with the University of Auckland and University of Illinois-Chicago. Once identified, TB Alliance further advanced TBA-354 through pre-clinical development and is now the sponsor of the Phase 1 study.
Status:
Investigational
Source:
NCT01724320: Phase 1 Interventional Unknown status Solid Tumors
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
PTX-008 (OTX008) is a calixarene-based compound and galectin-1 (Gal-1) inhibitor with potential anti-angiogenic and antineoplastic activities. Upon subcutaneous administration, galectin-1 inhibitor OTX008 binds Gal-1 which leads to Gal-1 oxidation and proteosomal degradation through a not yet fully elucidated mechanism, and eventually downregulates Gal-1. This decreases tumor cell growth and inhibits angiogenesis. Gal-1, a multifunctional carbohydrate-binding protein, is often overexpressed on tumor cells and plays a key role in cancer cell proliferation, apoptosis, tumor angiogenesis and evasion of immune responses. PTX-008 had been in phase I clinical trials for the treatment of solid tumours. This compound was originally discovered by University of Minnesota and PepTx, then licensed to OncoEthix (acquired by Merck Sharp & Dohme in 2014). However, no recent developments has been reported.
Status:
Investigational
Source:
NCT04683926: Phase 1 Interventional Completed Pain
(2021)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
O-Desmethyl tramadol (O-Desmethyltramadol, O-DSMT) is a metabolite of tramadol. O-Desmethyltramadol is an opioid analgesic and the main active metabolite of tramadol. (+)-O-Desmethyltramadol is the most important metabolite of tramadol produced in the liver after tramadol is consumed. This metabolite is considerably more potent as a μ-opioid agonist than the parent compound. O-desmethyl tramadol, inhibits 5-hydroxytryptamine type 2C receptors expressed in xenopus oocytes. O-desmethyl tramadol inhibits functions of M(1) receptors but has little effect on those of M(3) receptors. O-desmethyl tramadol has been widely used clinically and has analgesic activity.
Status:
Investigational
Source:
NCT01039844: Phase 1 Interventional Terminated Melanoma
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)