U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 12521 results

Lenacapavir (Sunlenca®) is a long-acting capsid inhibitor of human immunodeficiency virus type 1 (HIV-1) being developed by Gilead Sciences Inc. Lenacapavir is a multistage, selective inhibitor of HIV-1 capsid function that directly binds to the interface between capsid protein (p24) subunits in hexamers. Surface plasmon resonance sensorgrams showed dose-dependent and saturable binding of lenacapavir to cross-linked wild-type capsid hexamer with an equilibrium binding constant (KD) of 1.4 nM. Lenacapavir inhibits HIV-1 replication by interfering with multiple essential steps of the viral lifecycle, including capsid-mediated nuclear uptake of HIV-1 proviral DNA (by blocking nuclear import proteins binding to capsid), virus assembly and release (by interfering with Gag/Gag-Pol functioning, reducing production of capsid protein subunits), and capsid core formation (by disrupting the rate of capsid subunit association, leading to malformed capsids). It is available as an oral tablet and injectable solution, with the latter being a slow-release formulation to allow bi-annual subcutaneous administration. In August 2022, lenacapavir received its first approval in the EU for use in combination with other antiretroviral(s) in adults with multi-drug resistant HIV infection, for whom it is otherwise not possible to construct a suppressive anti-viral regimen. On December 22, 2022 the US Food and Drug Administration granted approval for Gilead Sciences’ Sunlenca (lenacapavir) plus other antiretroviral(s) to treat human immunodeficiency virus type 1 infection.
Olutasidenib (FT-2102) is a highly potent, orally bioavailable, brain-penetrant, and selective inhibitor of mutant IDH1. Olutasidenib was designed to reduce R-2-HG and revert pathologic epigenetic modifications that impair cellular differentiation to restore regulatory enzyme function. In patients with AML, susceptible IDH1 mutations are defined as those leading to increased levels of 2-hydroxyglutarate (2-HG) in the leukemia cells and where efficacy is predicted by 1) clinically meaningful remissions with the recommended dose of olutasidenib and/or 2) inhibition of mutant IDH1 enzymatic activity at concentrations of olutasidenib sustainable at the recommended dosage according to validated methods. The most common of such mutations in patients with AML are R132H and R132C substitutions. In vitro, olutasidenib inhibited mutated IDH1 R132H, R132L, R132S, R132G, and R132C proteins; wild-type IDH1 or mutated IDH2 proteins were not inhibited. Olutasidenib inhibition of mutant IDH1 led to decreased 2-HG levels in vitro and in in vivo xenograft models. On December 1, 2022, the FDA approved olutasidenib (brand name Rezlidhia) capsules for adult patients with relapsed or refractory acute myeloid leukemia with a susceptible IDH1 mutation as detected by an FDA-approved test.
Amisulpride, a benzamide derivative, shows a unique therapeutic profile being atypical antipsychotic. At low doses, it enhances dopaminergic neurotransmission by preferentially blocking presynaptic dopamine D2/D3 autoreceptors. At higher doses, amisupride antagonises postsynaptic dopamine D2 and D3 receptors, preferentially in the limbic system rather than the striatum, thereby reducing dopaminergic transmission. In addition its antagonism at serotonin 5-HT7 receptors likely underlies the antidepressant actions. Amisulpride is approved for clinical use in treating schizophrenia in a number of European countries and also for treating dysthymia, a mild form of depression, in Italy.
Pralsetinib (GAVRETO™, Blueprint Medicines Corporation) is an orally-administered, next-generation, small-molecule selective rearranged during transfection (RET) inhibitor being developed for the treatment of various solid tumours. RET is a well described proto-oncogene present in multiple cancers including non-small cell lung cancer (NSCLC), papillary thyroid cancer, and medullary thyroid carcinoma. Pralsetinib is a kinase inhibitor of wild-type RET and oncogenic RET fusions (CCDC6-RET) and mutations (RET V804L, RET V804M and RET M918T) with half maximal inhibitory concentrations (IC50s) less than 0.5 nM. In purified enzyme assays, pralsetinib inhibited DDR1, TRKC, FLT3, JAK1-2, TRKA, VEGFR2, PDGFRb, and FGFR1 at higher concentrations that were still clinically achievable at Cmax. In cellular assays, pralsetinib inhibited RET at approximately 14-, 40-, and 12-fold lower concentrations than VEGFR2, FGFR2, and JAK2, respectively. Pralsetinib is approved for the treatment of RET fusion-positive metastatic NSCLC. In the pivotal phase I/II ARROW trial, pralsetinib demonstrated rapid and durable anti-tumour activity in patients with advanced RET fusion-positive NSCLC who were previously treated with platinum-based chemotherapy or were treatment-naïve. Pralsetinib also showed clinical activity against intracranial metastases arising from NSCLC. Pralsetinib had a manageable tolerability profile, with the most common grade 3 treatment-related adverse events being neutropenia, hypertension, anaemia and decreased white blood cell count.
Pemigatinib, an oral kinases inhibitor, was approved under the brand name PEMAZYRE for the treatment of adults with previously treated, unresectable locally advanced, or metastatic cholangiocarcinoma with a fibroblast growth factor receptor 2 (FGFR2) fusion. The FDA-approved indication for pemigatinib was granted under accelerated approval based on the overall response rate and duration of response in pre-marketing clinical trials. The drug inhibited FGFR1-3 phosphorylation and signaling and decreased cell viability in cancer cell lines with activating FGFR amplification and fusions that resulted in constitutive activation of FGFR signaling.
Ripretinib (DCC-2618) is an investigational, orally available switch control kinase inhibitor being developed for the treatment of gastrointestinal stromal tumors (GIST), advanced systemic mastocytosis (ASM), gliomas, and other solid tumors driven by tyrosine-protein kinase KIT (KIT) or platelet-derived growth factor alpha (PDGFRα) kinase. Ripretinib acts by forcing the activation loop (or activation "switch") of kinases into an inactive conformation and is a type II kinase inhibitor demonstrated to broadly inhibit activation loop mutations in KIT and PDGFRA, previously thought only achievable with type I inhibitor. Ripretinib is developed by the company Deciphera and is being investigated in phase 3 clinical trials for the treatment of GIST, ASM and other tumors.
Tazemetostat (EPZ-6438) is a selective inhibitor of histone-lysine N-methyltransferase EZH2. The drug is under clinical development (phase II) for the treatment of Diffuse Large B Cell Lymphoma, Malignant Mesothelioma and Synovial Sarcoma.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Prostamedix is a 68Ga-labeled ligand of the prostate-specific membrane antigen (PSMA) for Prostate Cancer PET imaging. Because of the increased expression of PSMA in Prostate Cancer and its metastases, Prostamedix was reported to exhibit a favorable lesion-to-background ratio with high detection rates. Further studies evaluating Prostamedix showed substantially higher detection rates in patients with recurrent PC than reported for other imaging modalities, especially at low PSA values. The chelator HBED-CC (N,N'-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid), represents a hitherto rarely used acyclic complexing agent especially allowing efficient radiolabelling with 68Ga even at ambient temperature. By combining HBED-CC with the PSMA inhibitor Glu-urea-Lys, a favorable aromatic part is introduced into the radiotracer which was found to be a necessary requirement for sustainable interaction with the PSMA receptor, putatively with the accessory hydrophobic pocket of the PSMA
Upadacitinib (ABT-494) is a Janus kinase 1 (JAK1) inhibitor currently being developed by AbbVie for the treatment of rheumatoid arthritis (RA), Crohn’s disease, ulcerative colitis, atopic dermatitis, and psoriatic arthritis. It is also being investigated as a potential treatment for people with active ankylosing spondylitis (AS). Currently, upadacitinib is being evaluatedin six global phase III studies in RA and twophase III studies in psoriatic arthritis (PsA), inaddition to phase II studies in Crohn’s disease and atopicdermatitis and a combined phase II/III study inulcerative colitis. Upadacitinib is a potent and selective Janus kinase (JAK) 1 inhibitor with an IC50 of 43 nM.

Showing 11 - 20 of 12521 results