U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 69 results

Triazolam is a short-acting benzodiazepine used as a hypnotic agent in the treatment of insomnia. Some countries temporarily withdrew triazolam from the market because of concerns about adverse reactions, mostly psychological, associated with higher dose ranges. Its use at lower doses with appropriate care and labeling has been reaffirmed by the FDA and most other countries. Triazolam has a shorter half-life than chlordiazepoxide, flurazepam, and prazepam and does not generate active metabolites. Benzodiazepines bind nonspecifically to bezodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Triazolam is used for the short-term treatment of insomnia. Triazolam`s original brand name is Halcion. Triazolam is withdrawn in the United Kingdom due to risk of psychiatric adverse drug reactions. This drug continues to be available in the U.S. Internationally, triazolam is a Schedule IV drug under the Convention on Psychotropic Substances.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Temazepam is a benzodiazepine used as a hypnotic agent in the management of insomnia. Temazepam produces CNS depression at limbic, thalamic, and hypothalamic levels of the CNS. Temazepam increases the affinity of the neurotransmitter gamma-aminobutyric acid (GABA) for GABA receptors by binding to benzodiazepine receptors. Results are sedation, hypnosis, skeletal muscle relaxation, anticonvulsant activity, and anxiolytic action. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Temazepam is used for the short-term treatment of insomnia (generally 7-10 days).
Status:
First approved in 1970

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Flurazepam (known under the brand names Dalmane and Dalmadorm) is a drug which is a benzodiazepine derivative. It is a hypnotic agent which does not appear to decrease dream time as measured by rapid eye movements (REM). Furthermore, it decreases sleep latency and number of awakenings for a consequent increase in total sleep time. Flurazepam binds to an allosteric site on GABA-A receptors. Binding potentiates the action of GABA on GABA-A receptors by opening the chloride channel within the receptor, causing chloride influx and hyperpolarization. Flurazepam is useful for the treatment of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakening. Flurazepam can be used effectively in patients with recurring insomnia or poor sleeping habits, and in acute or chronic medical situations requiring restful sleep.

Class (Stereo):
CHEMICAL (MIXED)


Conditions:

Methohexital is an ultrashort-acting barbiturate widely used in dentistry because of its rapid onset, predictable effects, and short duration of action. It was marked under the name brevital sodium for the intravenous anaesthesia. It has also been commonly used to induce deep sedation. Like other barbiturates, methohexital exerts its effects through the gamma-aminobutyric acid (GABA) receptor complex. By binding to its own receptor on the complex, methohexital augments the inhibitory effect of GABA on neurons and additionally can exert a similar effect independent of GABA.
Meprobamate is a carbamate derivative used as an anxiolytic drug. Meprobamate enhances GABA-A currents, and at higher concentration, exhibits a separate channel-blocking effect that limits the magnitude of GABA(A) receptor potentiation. It is also a potent adenosine reuptake inhibitor (AdoRI), which is most likely responsible for its lesser degree of sedation compared to barbiturates. Meprobamate was withdrawn from European and Canadian markets due to its potential to cause physical and psychological dependence.
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
Status:
US Previously Marketed
First approved in 1972

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Triclofos is primarily indicated in conditions like Insomnia, and can also be given in adjunctive therapy as an alternative drug of choice in Nausea, vertigo, labyrinthine disorders. It is also used sedate people suffering from anxiety or tension before medical investigations. Triclofos is converted to Trichloroethanol in the body .This act on brain and produces sleep. Trichloroethanol decreases time taken to fall asleep and lengthen the sleep. Triclofos is most commonly used agent for sedation in neonates as well as in older infants and children in Japan.
Status:
US Previously Marketed
Source:
Beta-Chlor by Mead Johnson
(1963)
Source URL:
First approved in 1963
Source:
Beta-Chlor by Mead Johnson
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

CHLORAL BETAINE, a chemical complex of chloral hydrate and betaine, is a nonbarbiturate sedative and hypnotic. It is indicated for sleep induction, preoperative sedation, and daytime sedation. CHLORAL BETAINE is converted to chloral hydrate in the body and its action on the central nervous system is identical with that of chloral hydrate.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (RACEMIC)



Propiomazine is a typical antipsychotic, blocking H1 receptors and is primarily indicated in conditions Insomnia. Propiomazine was also used under brand name largon for the relief of restlessness and apprehension, preoperatively or during surgery. In addition largon was used as an adjunct to analgesics for the relief of restlessness and apprehension during labor. But this drug was discontinued.
Status:
US Previously Marketed
First approved in 1957

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Glutethimide is a GABA agonist that was introduced by Ciba in 1954 as a safe alternative to barbiturates to treat insomnia. Before long, however, it had become clear that glutethimide was just as likely to cause addiction and caused similarly severe withdrawal symptoms. Glutethimide was discontinued in the US by manufacturers in 1993. Current production levels in the United States point to it only being used in small-scale research.