{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
tyrosine
to a specific field?
Status:
US Approved Rx
(2012)
Source:
NDA202811
(2012)
Source URL:
First approved in 2012
Source:
NDA202811
Source URL:
Class:
PROTEIN
Conditions:
Linaclotide (marketed under the trade name Linzess and Constella) is a peptide agonist of the guanylate cyclase 2C (GC-C). Once linaclotide and its active metabolite binds to GC-C, it has local effect on the luminal surface of the intestinal epithelium. Activation of GC-C by linaclotide results in the intra- and extracellular increase of cyclic guanosine monophosphate concentrations (cGMP). This elevation of cGMP levels stimulates the secretion of chloride and bicarbonate into the intestinal lumen via activation of cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. The metabolite of linaclotide MM-419447 (CCEYCCNPACTGC) contributes to the pharmacologic effects of linaclotide. Ultimately, linaclotide helps patients with IBS (especially with constipation) as GI transit is accelerated and the release of intestinal fluid is increased. In animal models, a decrease in visceral pain after administration of linaclotide may be observed. A decrease in the activity of pain-sensing nerves occurs as a result of an increase in extracellular cGMP. It was approved by the FDA in August 2012 for the treatment of chronic idiopathic constipation and irritable bowel syndrome with constipation (IBS-C) in adults.
Status:
US Approved Rx
(2010)
Source:
BLA022505
(2010)
Source URL:
First approved in 2010
Source:
BLA022505
Source URL:
Class:
PROTEIN
Conditions:
Tesamorelin is an analog of human growth hormone-releasing factor (GRF). The peptide precursor of tesamorelin acetate is produced synthetically and is comprised of the 44 amino acid sequence of human GRF. In vitro, tesamorelin binds and stimulates human GRF receptors with similar potency as the endogenous GRF. GRF, also known as growth hormone-releasing hormone (GHRH), is a hypothalamic peptide that acts on the pituitary somatotroph cells to stimulate the synthesis and pulsatile release of endogenous growth hormone (GH), which is both anabolic and lipolytic. GH exerts its effects by interacting with specific receptors on a variety of target cells, including chondrocytes, osteoblasts, myocytes, hepatocytes, and adipocytes, resulting in a host of pharmacodynamic effects. Some, but not all these effects, are primarily mediated by IGF-1 produced in the liver and in peripheral tissues. Tesamorelin is the first and, so far, only treatment indicated for the reduction of excess abdominal fat in patients with HIV-associated lipodystrophy. Tesamorelin is effective in improving visceral adiposity and body image in patients with HIV-associated lipodystrophy over 26-52 weeks of treatment. Potential limitations for its use include high cost and lack of long-term safety and adherence data. Tesamorelin provides a useful treatment option for management of patients with significant lipodystrophy related to HIV infection.
Status:
US Approved Rx
(2005)
Source:
NDA021332
(2005)
Source URL:
First approved in 2005
Source:
NDA021332
Source URL:
Class:
PROTEIN
Conditions:
Pramlintide is an analog of human amylin. Amylin is co-secreted with insulin from pancreatic beta cells and acts centrally to slow gastric emptying, suppress postprandial glucagon secretion, and decrease food intake. These actions complement those of insulin to regulate blood glucose concentrations. Amylin is relatively deficient in patients with type 2 diabetes, depending on the severity of beta-cell secretory failure, and is essentially absent in patients with type 1 diabetes. Through mechanisms similar to those of amylin, pramlintide improves overall glycemic control, reduces postprandial glucose levels, and reduces bodyweight in patients with diabetes using mealtime insulin. SYMLIN® (pramlintide acetate) is indicated for patients with type 1 or type 2 diabetes who use mealtime insulin and have failed to achieve desired glycemic control despite optimal insulin therapy.
Status:
US Approved Rx
(2005)
Source:
NDA021332
(2005)
Source URL:
First approved in 2005
Source:
NDA021332
Source URL:
Class:
PROTEIN
Conditions:
Pramlintide is an analog of human amylin. Amylin is co-secreted with insulin from pancreatic beta cells and acts centrally to slow gastric emptying, suppress postprandial glucagon secretion, and decrease food intake. These actions complement those of insulin to regulate blood glucose concentrations. Amylin is relatively deficient in patients with type 2 diabetes, depending on the severity of beta-cell secretory failure, and is essentially absent in patients with type 1 diabetes. Through mechanisms similar to those of amylin, pramlintide improves overall glycemic control, reduces postprandial glucose levels, and reduces bodyweight in patients with diabetes using mealtime insulin. SYMLIN® (pramlintide acetate) is indicated for patients with type 1 or type 2 diabetes who use mealtime insulin and have failed to achieve desired glycemic control despite optimal insulin therapy.
Status:
US Approved Rx
(1978)
First approved in 1978
Class:
PROTEIN
Status:
Investigational
Source:
NCT03255070: Phase 1 Interventional Completed Breast Neoplasms
(2018)
Source URL:
Class:
PROTEIN
Status:
Investigational
Source:
NCT03700294: Phase 1 Interventional Terminated Advanced Solid Tumors
(2018)
Source URL:
Class:
PROTEIN
Status:
Investigational
Source:
NCT03427151: Phase 3 Interventional Completed Lupus Erythematosus, Systemic
(2018)
Source URL:
Class:
PROTEIN
Forigerimod (also known as IPP-201101) a phosphopeptide is being investigated for the treatment of Lupus Erythematosus, Systemic. This drug is completed phase III clinical trials and is ready for licensing.