U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 157731 - 157740 of 167129 results

Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ACHIRAL)



Emedastine is an antihistaminic agent, which was approved by FDA for the treatment of allergic conjunctivitis (Emadine brand name). The drug acts selectively on H1 receptors with lower affinity to H2 and H3 subtypes. Emedastine has a relatively unfavorable CNS effect profile. A small percentage of patients reported somnolence as an adverse effect after administration.
Dolasetron is an antinauseant and antiemetic agent, which is approved as a mesylate salt under the brand name anzement for the prevention of nausea and vomiting associated with moderately emetogenic cancer chemotherapy, including initial and repeat courses; and for the prevention of postoperative nausea and vomiting. Dolasetron is a highly specific and selective serotonin 5-HT3 receptor antagonist. The serotonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery and centrally in the chemoreceptor trigger zone of the area postrema. It is thought that chemotherapeutic agents produce nausea and vomiting by releasing serotonin from the enterochromaffin cells of the small intestine, and that the released serotonin then activates 5-HT3 receptors located on vagal efferents to initiate the vomiting reflex. This drug is not shown to have activity at other known serotonin receptors, and has low affinity for dopamine receptors. Dolasetron mesilate is rapidly reduced by carbonyl reductase to form its major pharmacologically active metabolite reduced dolasetron. In addition dolasetron was in the phase III clinical trials for the investigation, that intravenous using of dolasetron mesilate reduces pain intensity in patients with fibromyalgia.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ABSOLUTE)



Arbutamine was indicated to elicit acute cardiovascular responses in order to aid in diagnosing the presence or absence of coronary artery disease in patients who cannot exercise adequately. Arbutamine is a synthetic catecholamine with positive chronotropic and inotropic properties. The chronotropic (increase in heart rate [HR]) and inotropic (increase in force of contraction) effects of arbutamine serve to mimic exercise by increasing cardiac work (producing stress) and provoke myocardial ischemia in patients with compromised coronary arteries. In functional assays, arbutamine is more selective for beta-adrenergic receptors than for alpha-adrenergic receptors. The beta-agonist activity of arbutamine provides cardiac stress by increasing HR, cardiac contractility, and systolic blood pressure.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ACHIRAL)



Delavirdine is a nonnucleoside reverse transcriptase inhibitor (NNRTI). Delavirdine binds directly to reverse transcriptase (RT) and blocks RNA-dependent and DNA-dependent DNA polymerase activities. Delavirdine does not compete with template:primer or deoxynucleoside triphosphates. HIV-2 RT and human cellular DNA polymerases alfa, gamma, or delta are not inhibited by delavirdine. In addition, HIV-1 group O, a group of highly divergent strains that are uncommon in North America, may not be inhibited by delavirdine. Delavirdine is marketed under the trade name Rescriptor, indicated for the treatment of HIV-1 infection in combination with at least 2 other active antiretroviral agents when therapy is warranted. .
Sparfloxacin is a synthetic fluoroquinolone broad-spectrum antimicrobial agent in the same class as ofloxacin and norfloxacin. Sparfloxacin has in vitro activity against a wide range of gram-negative and gram-positive microorganisms. Sparfloxacin exerts its antibacterial activity by inhibiting DNA gyrase, a bacterial topoisomerase. DNA gyrase is an essential enzyme which controls DNA topology and assists in DNA replication, repair, deactivation, and transcription. Quinolones differ in chemical structure and mode of action from (beta)-lactam antibiotics. Quinolones may, therefore, be active against bacteria resistant to (beta)-lactam antibiotics. Although cross-resistance has been observed between sparfloxacin and other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to sparfloxacin. In vitro tests show that the combination of sparfloxacin and rifampin is antagonistic against Staphylococcus aureus. The bactericidal action of sparfloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, and recombination. Sparfloxacin is used for the treatment of adults with the following infections caused by susceptible strains microorganisms: community-acquired pneumonia (caused by Chlamydia pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, Moraxella catarrhalis, Mycoplasma pneumoniae, or Streptococcus pneumoniae) and acute bacterial exacerbations of chronic bronchitis (caused by Chlamydia pneumoniae, Enterobacter cloacae, Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis,Staphylococcus aureus, or Streptococcus pneumoniae). Sparfloxacin has trade names Spacin in Bangladesh, Zagam and Zagam Respipac. Zagam is no longer available in the United States.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(23)(i) internal analgesic salsalate
Source URL:
First approved in 1995
Source:
Salsalate by Caraco Pharmaceutical Laboratories, Ltd.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Salsalate is a dimer of salicylic acid. Upon administration, it is metabolically hydrolyzed to salicylic acid. Salsalate is is a nonsteroidal anti-inflammatory agent for oral administration for treatment of rheumatoid arthritis, osteoarthritis and related rheumatoid disorders. In addition, salsalate is investigated for treatment of type 2 diabetes.
Status:
US Previously Marketed
Source:
AMIFOSTINE by EUGIA PHARMA SPECLTS
(2017)
Source URL:
First approved in 1995

Class (Stereo):
CHEMICAL (ACHIRAL)



Amifostine is an organic thiophosphate cytoprotective agent known chemically as 2-[(3¬ aminopropyl)amino]ethanethiol dihydrogen phosphate (ester), it’s adjuvant used in cancer chemotherapy and radiotherapy involving DNA-binding chemotherapeutic agents. It is marketed under the trade name Ethyol. Amifostine is a prodrug and is dephosphorylated by alkaline phosphatase in tissues to a pharmacologically active free thiol metabolite. This metabolite is believed to be responsible for the reduction of the cumulative renal toxicity of cisplatin and for the reduction of the toxic effects of radiation on normal oral tissues. The ability of Ethyol to differentially protect normal tissues is attributed to the higher capillary alkaline phosphatase activity, higher pH and better vascularity of normal tissues relative to tumor tissue, which results in a more rapid generation of the active thiol metabolite as well as a higher rate constant for uptake into cells. The higher concentration of the thiol metabolite in normal tissues is available to bind to, and thereby detoxify, reactive metabolites of cisplatin. This thiol metabolite can also scavenge reactive oxygen species generated by exposure to either cisplatin or radiation. Healthy cells are preferentially protected because amifostine and metabolites are present in healthy cells at 100-fold greater concentrations than in tumor cells.

Showing 157731 - 157740 of 167129 results