{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for alpha root_names_name in (root_names_name (approximate match)
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
First approved in 1941
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Cetylpyridinium (used in a form of chloride salt) is a cationic surface-active agent and has a broad antimicrobial spectrum, with rapid killing of gram-positive pathogens and yeast in particular. It is suggested that interaction with bacteria occurs by the disruption of membrane function, leakage of cytoplasmic material, and ultimately the collapse of the intra-cellular equilibrium. The drug is used under various trade names as an oral OTC hygiene product (mouthwash, dental kits, etc.) to control the dental plaque and to prevent the subsequent gingivitis.
Status:
US Previously Marketed
Source:
PERCORTEN by NOVARTIS
(1961)
Source URL:
First approved in 1939
Source:
DOCA by ORGANON USA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Desoxycorticosterone pivalate (DOCP) is a mineralocorticoid hormone and an analog of desoxycorticosterone. DOCP is a long-acting ester of desoxycorticosterone acetate (DOCA) which is recognized as having the same qualitative effects as the natural mineralocorticoid hormone aldosterone. It’s used as Percorten-V for replacement therapy for the mineralocorticoid deficit in dogs with primary adrenocortical insufficiency. Percorten-V is only available in the U.S., Canada, Australia and recently, Denmark. Percorten was originally developed for the treatment of Addison's disease in humans but the demand for it decreased significantly once Florinef was available. Unaware that their product was being prescribed “off-label” for the treatment of canine Addison’s Disease and faced with a decreased demand for Percorten, the manufacturer *almost* discontinued production until the veterinary community rose up and voiced their distress. Field trials were run and the FDA approved the use of Percorten-V (the "v" is for veterinary). DOCP like other adrenocorticoid hormones is thought to act by controlling the rate of synthesis of proteins. It reacts with receptor proteins in the cytoplasm to form a steroid-receptor complex. This complex moves into the nucleus, where it binds to chromatin that result in genetic transcription of cellular DNA to messenger RNA. The steroid hormones appear to induce transcription and synthesis of specific proteins, which produce the physiologic effects seen after administration. The most important effect of DOCP is to increase the rate of renal tubular absorption of sodium. This effect is seen most intensely in the thick portion of the ascending limb of the loop of Henle. It also increases sodium absorption in the proximal convoluted tubule but this effect is less important in sodium retention. Chloride follows the sodium out of the renal tubule. Another important effect of DOCP is enhanced renal excretion of potassium. This effect is driven by the resorption of sodium that pulls potassium from the extracellular fluid into the renal tubules, thus promoting potassium excretion.
Status:
US Previously Marketed
Source:
PERCORTEN by NOVARTIS
(1961)
Source URL:
First approved in 1939
Source:
DOCA by ORGANON USA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Desoxycorticosterone pivalate (DOCP) is a mineralocorticoid hormone and an analog of desoxycorticosterone. DOCP is a long-acting ester of desoxycorticosterone acetate (DOCA) which is recognized as having the same qualitative effects as the natural mineralocorticoid hormone aldosterone. It’s used as Percorten-V for replacement therapy for the mineralocorticoid deficit in dogs with primary adrenocortical insufficiency. Percorten-V is only available in the U.S., Canada, Australia and recently, Denmark. Percorten was originally developed for the treatment of Addison's disease in humans but the demand for it decreased significantly once Florinef was available. Unaware that their product was being prescribed “off-label” for the treatment of canine Addison’s Disease and faced with a decreased demand for Percorten, the manufacturer *almost* discontinued production until the veterinary community rose up and voiced their distress. Field trials were run and the FDA approved the use of Percorten-V (the "v" is for veterinary). DOCP like other adrenocorticoid hormones is thought to act by controlling the rate of synthesis of proteins. It reacts with receptor proteins in the cytoplasm to form a steroid-receptor complex. This complex moves into the nucleus, where it binds to chromatin that result in genetic transcription of cellular DNA to messenger RNA. The steroid hormones appear to induce transcription and synthesis of specific proteins, which produce the physiologic effects seen after administration. The most important effect of DOCP is to increase the rate of renal tubular absorption of sodium. This effect is seen most intensely in the thick portion of the ascending limb of the loop of Henle. It also increases sodium absorption in the proximal convoluted tubule but this effect is less important in sodium retention. Chloride follows the sodium out of the renal tubule. Another important effect of DOCP is enhanced renal excretion of potassium. This effect is driven by the resorption of sodium that pulls potassium from the extracellular fluid into the renal tubules, thus promoting potassium excretion.
Status:
US Previously Marketed
Source:
Transentine by Ciba
(1937)
Source URL:
First marketed in 1937
Source:
Transentine by Ciba
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Adiphenine is a ternary amino ligand. It is used as a local anesthetic that reduces the frequency of acetylcholine-induced single-channel currents. It was originally introduced as a spasmolytic agent. Adiphenine reduced the muscle tone of the gastrointestinal tract, bile duct and gallbladder, bronchi, bladder. It affects the tone of the muscles of the eye, causing the pupil dilated (mydriasis), increased intraocular pressure, and paralysis of accommodation. Influences on the cardiovascular system, causing tachycardia and improving AV-conduction. Adiphenine side effects are: nausea, vomiting, heartburn, dizziness, headache. Adiphenine has not been widely used clinically.
Status:
US Previously Marketed
Source:
VASOCORT HYDROXYAMPHETAMINE HYDROBROMIDE by SKF
(1961)
Source URL:
First marketed in 1935
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Hydroxyamphetamine is a derivative of amphetamines. Hydroxyamphetamine is intended mainly as local eye drops for diagnostic purposes. It is indirect sympathomimetic agent which cause dilation of the eye pupil before diagnostic test. Among the minor side effects from its use are: change in color vision, difficulty seeing at night, dry mouth, headache, increased sensitivity of eyes to sunlight, muscle stiffness or tightness and temporary stinging in the eyes. The main use of hydroxyamphetamines as eye drops is the diagnosis of Horner's syndrome which is characterized by nerve lesions. Hydroxyamphetamine hydrobromide is a component of FDA approved brand drug - Paremyd sterile ophthalmic solution (Hydroxyamphetamine hydrobromide, USP 1.0%, Tropicamide, USP 0.25%). Hydroxyamphetamine is an indirect-acting sympathomimetic, while tropicamide acts as a parasympatholytic.