{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
histamine
to a specific field?
Status:
US Previously Marketed
Source:
EMADINE by NOVARTIS
(1997)
Source URL:
First approved in 1997
Source:
EMADINE by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Emedastine is an antihistaminic agent, which was approved by FDA for the treatment of allergic conjunctivitis (Emadine brand name). The drug acts selectively on H1 receptors with lower affinity to H2 and H3 subtypes. Emedastine has a relatively unfavorable CNS effect profile. A small percentage of patients reported somnolence as an adverse effect after administration.
Status:
US Previously Marketed
Source:
COGNEX by SHIONOGI INC
(1993)
Source URL:
First approved in 1993
Source:
COGNEX by SHIONOGI INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tacrine is a parasympathomimetic- a reversible cholinesterase inhibitor that is indicated for the treatment of mild to moderate dementia of the Alzheimer's type. An early pathophysiological feature of Alzheimer's disease that is associated with memory loss and cognitive deficits is a deficiency of acetylcholine as a result of selective loss of cholinergic neurons in the cerebral cortex, nucleus basalis, and hippocampus. Tacrine is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine at cholinergic synapses through reversible inhibition of its hydrolysis by acetylcholinesterase. If this proposed mechanism of action is correct, tacrine's effect may lessen as the disease progresses and fewer cholinergic neurons remain functionally intact. There is no evidence that tacrine alters the course of the underlying dementing process. The mechanism of tacrine is not fully known, but it is suggested that the drug is an anticholinesterase agent which reversibly binds with and inactivates cholinesterases. This inhibits the hydrolysis of acetylcholine released from functioning cholinergic neurons, thus leading to an accumulation of acetylcholine at cholinergic synapses. The result is a prolonged effect of acetylcholine. is used for the palliative treatment of mild to moderate dementia of the Alzheimer's type. Tacrine was marketed under the trade name Cognex. Because of its liver toxicity and attendant requirement for monitoring liver function, tacrine prescriptions dropped after other acetylcholinesterase inhibitors were introduced, and its use has been largely discontinued.
Status:
US Previously Marketed
Source:
LIVOSTIN by NOVARTIS
(1993)
Source URL:
First approved in 1993
Source:
LIVOSTIN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Levocabastine (trade name Livo) is a selective second-generation H1-receptor antagonist used for allergic conjunctivitis. Levocabastine binds the G protein-coupled neurotensin receptor 2 (NTR2), but not NTR1, where it behaves as a weak partial inverse agonist. In an environmental study, LIVOSTIN 0.05% (levocabastine hydrochloride ophthalmic suspension) instilled four times daily was shown to be significantly more effective than its vehicle in reducing ocular itching associated with seasonal allergic conjunctivitis. After instillation in the eye, levocabastine is systemically absorbed. However, the amount of systemically absorbed levocabastine after therapeutic ocular doses is low (mean plasma concentrations in the range of 1-2 ng/mL). Brand name Livostin is no longer available in the U.S., but generic versions may still be available. Common side effects include burning, stinging, itching, or watering of the eyes, eye irritation or discomfort, blurred vision, dry or puffy eyes, headache, nosebleed, nausea, or fatigue.
Status:
US Previously Marketed
Source:
LIVOSTIN by NOVARTIS
(1993)
Source URL:
First approved in 1993
Source:
LIVOSTIN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levocabastine (trade name Livo) is a selective second-generation H1-receptor antagonist used for allergic conjunctivitis. Levocabastine binds the G protein-coupled neurotensin receptor 2 (NTR2), but not NTR1, where it behaves as a weak partial inverse agonist. In an environmental study, LIVOSTIN 0.05% (levocabastine hydrochloride ophthalmic suspension) instilled four times daily was shown to be significantly more effective than its vehicle in reducing ocular itching associated with seasonal allergic conjunctivitis. After instillation in the eye, levocabastine is systemically absorbed. However, the amount of systemically absorbed levocabastine after therapeutic ocular doses is low (mean plasma concentrations in the range of 1-2 ng/mL). Brand name Livostin is no longer available in the U.S., but generic versions may still be available. Common side effects include burning, stinging, itching, or watering of the eyes, eye irritation or discomfort, blurred vision, dry or puffy eyes, headache, nosebleed, nausea, or fatigue.
Status:
US Previously Marketed
Source:
COGNEX by SHIONOGI INC
(1993)
Source URL:
First approved in 1993
Source:
COGNEX by SHIONOGI INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tacrine is a parasympathomimetic- a reversible cholinesterase inhibitor that is indicated for the treatment of mild to moderate dementia of the Alzheimer's type. An early pathophysiological feature of Alzheimer's disease that is associated with memory loss and cognitive deficits is a deficiency of acetylcholine as a result of selective loss of cholinergic neurons in the cerebral cortex, nucleus basalis, and hippocampus. Tacrine is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine at cholinergic synapses through reversible inhibition of its hydrolysis by acetylcholinesterase. If this proposed mechanism of action is correct, tacrine's effect may lessen as the disease progresses and fewer cholinergic neurons remain functionally intact. There is no evidence that tacrine alters the course of the underlying dementing process. The mechanism of tacrine is not fully known, but it is suggested that the drug is an anticholinesterase agent which reversibly binds with and inactivates cholinesterases. This inhibits the hydrolysis of acetylcholine released from functioning cholinergic neurons, thus leading to an accumulation of acetylcholine at cholinergic synapses. The result is a prolonged effect of acetylcholine. is used for the palliative treatment of mild to moderate dementia of the Alzheimer's type. Tacrine was marketed under the trade name Cognex. Because of its liver toxicity and attendant requirement for monitoring liver function, tacrine prescriptions dropped after other acetylcholinesterase inhibitors were introduced, and its use has been largely discontinued.
Status:
US Previously Marketed
Source:
OPTIMINE by SCHERING
(1977)
Source URL:
First approved in 1977
Source:
OPTIMINE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Azatadine is an antihistamine, which blocks the effects of the naturally occurring chemical histamine in the body. Azatadine is used to treat sneezing; runny nose; itching, watery eyes; hives; rashes; and other symptoms of allergies and the common cold. The antihistamines antagonize those pharmacological effects of histamine, which are mediated through activation of H1- receptor sites and thereby reduce the intensity of allergic reactions and tissue injury response involving histamine release.
Status:
First approved in 1971
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Spectinomycin is an antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of acute gonorrheal urethritis and proctitis in the male and acute gonorrheal cervicitis and proctitis in the female when due to susceptible strains of Neisseria gonorrhoeae. In vitro studies have shown spectinomycin to be active against most strains of Neisseria gonorrhoeae (minimum inhibitory concentration <7.5 to 20 mcg/mL). Footprint studies indicate that spectinomycin exerts regional effects on ribosomal structure. Spectinomycin hydrochloride is an inhibitor of protein synthesis in the bacterial cell; the site of action is the 30S ribosomal subunit. The antibiotic is not significantly bound to plasma protein. Spectinomycin was discovered 1961. It is on the World Health Organization's List of Essential Medicines, the most important medications needed in a basic health system. This antibiotic is no longer available in the United States. Pfizer has discontinued distribution of spectinomycin (Trobicin) in the U.S. The drug continues to be distributed outside the U.S.
Status:
US Previously Marketed
First approved in 1967
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diphenidol, a nonphenothiazinic antiemetic agent used primarily in patients with Meniere disease and labyrinthopathies to treat vomiting and vertigo, is considered to be a relatively safe drug. Since it was first approved in the United States in 1967, this drug has been widely used in Latin America and Asia and has contributed to sporadic suicidal and accidental poisonings in mainland China and Taiwan. The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. Diphenidol is used to relieve or prevent nausea, vomiting, and dizziness caused by certain medical problems.
Status:
First approved in 1966
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.
Status:
First approved in 1966
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.