{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Class (Stereo):
CHEMICAL (UNKNOWN)
Prisotinol is aminoalkyl-5-pyridinol patented by Ciba-Geigy A.-G. for treatment of angina pectoris. Prisotinol was studied in phase II clinical trials as a cardioprotective agent.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Romazarit, (Ro 31-3948, 7), 2-[[2-(4-chlorophenyl)-4-methyl-5-oxazolyl]methoxy]-2-methylpropionic acid is a substituted heterocyclic alkoxypropionic acid. Romazarit was considered to be a potential disease-modifying antirheumatic drug. Romazarit was withdrawn due to its toxicity profile.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Decominol is a bactericidal compound used in the cosmetic industry and developed by the French company Laboratoires Pharmascience. Bacteriostatic activity is claimed to be particularly significant in the case of gram-negative bacteria, especially Escherichia coli and Pseudomonas aeruginosa.
Status:
Investigational
Source:
NCT01548703: Phase 1 Interventional Completed Healthy
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT00966914: Phase 3 Interventional Completed Non-small Cell Lung Cancer
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Dimesna is a prodrug of mesna (dimer of mesna). Dimesna is reduced to mesna in the kidneys. Dimesna does not prevent cellular damage by metabolites of ifosfamide and cyclophosphamide in the renal tubular cell line LLC-PK1. Dimesna is a mucolytic agent used to alleviate toxic side effects of antitumor drugs. The organic acid transporter OAT4 on the luminal side of the proximal renal tubule facilitates the reabsorption of dimesna, and therefore its reduction to mesna, whereas the multidrug and toxin extrusion protein MATE1, the multidrug resistance protein MRP2, and P glycoprotein facilitate the efflux of mesna and/or dimesna back into the lumen; dimesna may also be excreted unchanged by MRP4. It has therefore been suggested that polymorphism of these renal transport proteins or transporter-mediated drug-drug interactions may reduce the efficacy of mesna and dimesna.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Luminespib (NVP-AUY922) is a highly potent isoxazole-based, nongeldanamycin HSP90 inhibitor that inhibits the adenosine triphosphatase activity of
HSP90. Luminespib is a highly potent HSP90 inhibitor for HSP90α/β with IC50 of 13 nM /21 nM in cell-free assays, weaker potency against the HSP90 family members GRP94 and TRAP-1, exhibits the tightest binding of any small-molecule HSP90 ligand. Luminespib potently inhibited in vitro growth in all 41 NSCLC cell lines evaluated with IC50 less than 100 nM. IC100 value less than 40 nM was seen in 36 of 41 lines. Luminespib (NVP-AUY922) has greater potency, reduced hepatotoxicity, and lower dependence on DT-diaphorase than the first-generation HSP90 inhibitors. Luminespib was discovered in a multiparameter lead optimization program based on a high-throughput screening hit methodology developed jointly by The Institute of Cancer Research, UK and the pharmaceutical company Vernalis. It has been licensed to Novartis. Luminespib activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. Pre-clinical studies proved that Luminespib acts via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. These results helped Luminespib to enter clinical trials for various cancers including breast cancers. From 2011 to 2014 it was in Phase II clinical trials.
Status:
Investigational
Source:
NCT04120233: Phase 1 Interventional Completed Drug Toxicity
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Investigational
Source:
NCT00979953: Phase 2 Interventional Completed Osteoarthritis of the Knee
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Adolor Corporation and Pfizer were developing an orally available and selective opioid delta (δ) receptor agonist, ADL 5747 (also known as PF 04856881), for the treatment of pain. ADL-5747 showed efficient pain-reducing properties in the two preclinical models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. ADL-5747 had been in phase II clinical trials for the treatment of pain. However, this studies on this drug candidate were discontinued in 2010.