{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for telotristat root_names_stdName in Standardized Name (approximate match)
Status:
US Approved Rx
(1960)
Source:
NDA012462
(1960)
Source URL:
First approved in 1960
Source:
NDA012462
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diphenoxylate is an opioid drug used for the treatment of acute diarrhea. The drug is used in combination with atropine and marketed under names Lomotil and Diphenoxylate hydrochloride and atropine sulfate. Diphenoxylate is biotransformed in man by ester hydrolysis to diphenoxylic acid (difenoxine), which is biologically active and the major metabolite in the blood. The drug exerts its action by activating mu opioid receptors of intestinal mucosa.
Status:
US Approved Rx
(1994)
Source:
ANDA040067
(1994)
Source URL:
First approved in 1959
Source:
ANDA084306
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Tropicamide (Mydriacyl) is an anticholinergic used as a mydriatic.Tropicamide belongs to the group of medicines called anti-muscarinics. Tropicamide blocks the receptors in the muscles of the eye (muscarinic receptors). These receptors are involved controlling the pupil size and the shape of the lens. By blocking these receptors, tropicamide produces dilatation of the pupil (mydriasis) and prevents the eye from accommodating for near vision (cycloplegia). Tropicamide is given as eye drops to dilate the pupil and relax the lens so that eye examinations can be carried out thoroughly.
Status:
US Approved Rx
(2008)
Source:
ANDA040804
(2008)
Source URL:
First approved in 1956
Source:
ATARAX by ROERIG
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Hydroxyzine, a piperazine antihistamine structurally related to buclizine, cyclizine, and meclizine, is used to treat histamine-mediated pruritus or pruritus due to allergy, nausea and vomiting, and, in combination with an opiate agonist, anxiolytic pain. Hydroxyzine is also used as a perioperative sedative and anxiolytic and to manage acute alcohol withdrawal. Hydroxyzine competes with histamine for binding at H1-receptor sites on the effector cell surface, resulting in suppression of histaminic edema, flare, and pruritus. The sedative properties of hydroxyzine occur at the subcortical level of the CNS. Secondary to its central anticholinergic actions, hydroxyzine may be effective as an antiemetic. It is used for symptomatic relief of anxiety and tension associated with psychoneurosis and as an adjunct in organic disease states in which anxiety is manifested.
Status:
US Approved Rx
(1998)
Source:
ANDA040274
(1998)
Source URL:
First approved in 1955
Source:
NDA009768
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Hydroxychloroquine possesses antimalarial properties and also exerts a beneficial effect in lupus erythematosus (chronic discoid or systemic) and acute or chronic rheumatoid arthritis. Although the exact mechanism of action is unknown, it may be based on ability of hydroxychloroquine to bind to and alter DNA. Hydroxychloroquine has also has been found to be taken up into the acidic food vacuoles of the parasite in the erythrocyte. This increases the pH of the acid vesicles, interfering with vesicle functions and possibly inhibiting phospholipid metabolism. In suppressive treatment, hydroxychloroquine inhibits the erythrocytic stage of development of plasmodia. In acute attacks of malaria, it interrupts erythrocytic schizogony of the parasite. Its ability to concentrate in parasitized erythrocytes may account for their selective toxicity against the erythrocytic stages of plasmodial infection. As an antirheumatic, hydroxychloroquine is thought to act as a mild immunosuppressant, inhibiting the production of rheumatoid factor and acute phase reactants. It also accumulates in white blood cells, stabilizing lysosomal membranes and inhibiting the activity of many enzymes, including collagenase and the proteases that cause cartilage breakdown. Hydroxychloroquine is used for the suppressive treatment and treatment of acute attacks of malaria due to Plasmodium vivax, P. malariae, P. ovale, and susceptible strains of P. falciparum. It is also indicated for the treatment of discoid and systemic lupus erythematosus, and rheumatoid arthritis.
Status:
US Approved Rx
(1998)
Source:
ANDA040273
(1998)
Source URL:
First approved in 1955
Source:
NDA009435
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Chloroprocaine (Nesacaine®, Nesacaine®-MPF) is a non pyrogenic local anesthetic. Nesacaine® is indicated for the production of local anesthesia by infiltration and peripheral nerve block. It is not to be used for lumbar or caudal epidural anesthesia. Nesacaine®-MPF is indicated for the production of local anesthesia by infiltration, peripheral and central nerve block, including lumbar and caudal epidural blocks. Nesacaine® and Nesacaine®-MPF are not to be used for subarachnoid administration. Chloroprocaine (Nesacaine®, Nesacaine®-MPF), like other local anesthetics, blocks the generation and the conduction of nerve impulses, presumably by increasing the threshold for electrical excitation in the nerve, by slowing the propagation of the nerve impulse and by reducing the rate of rise of the action potential. It acts mainly by inhibiting sodium influx through voltage gated sodium channels in the neuronal cell membrane of peripheral nerves. When the influx of sodium is interrupted, an action potential cannot arise and signal conduction is thus inhibited.
Status:
US Approved Rx
(1971)
Source:
ANDA080027
(1971)
Source URL:
First approved in 1953
Source:
OPHTHAINE by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Proparacaine is a topical anesthetic drug of the amino ester group. It is available as its hydrochloride salt in ophthalmic solutions at a concentration of 0.5%. Proparacaine hydrochloride ophthalmic solution is indicated for procedures in which a topical ophthalmic anesthetic is indicated: corneal anesthesia of short duration, e.g. tonometry, gonioscopy, removal of corneal foreign bodies, and for short corneal and conjunctival procedures. Proparacaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. More specifically, proparacaine appears to bind or antagonize the function of voltage gated sodium channels. The exact mechanism whereby proparacaine and other local anesthetics influence the permeability of the cell membrane is unknown; however, several studies indicate that local anesthetics may limit sodium ion permeability through the lipid layer of the nerve cell membrane. Proparacaine may alter epithelial sodium channels through interaction with channel protein residues. This limitation prevents the fundamental change necessary for the generation of the action potential.
Status:
US Approved Rx
(1974)
Source:
ANDA084108
(1974)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Cyclopentolate (cyclopentolate hydrochloride) is a parasympatholytic anticholinergic used solely to obtain mydriasis or cycloplegia. This anticholinergic preparation blocks the responses of the sphincter muscle of the iris and the accommodative muscle of the ciliary body to cholinergic stimulation, producing pupillary dilation (mydriasis) and paralysis of accommodation (cycloplegia). It acts rapidly, but has a shorter duration than atropine. Maximal cycloplegia occurs within 25 to 75 minutes after instillation. Complete recovery of accommodation usually takes 6 to 24 hours. Complete recovery from mydriasis in some individuals may require several days. Heavily pigmented irides may require more doses than lightly pigmented irides.
Status:
US Approved Rx
(2020)
Source:
NDA211039
(2020)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Oxybuprocaine (benoxinate) hydrochloride (MINIMS®) is a local, surface anaesthetic of the ester type. It has been shown to give effective surface anaesthesia in short opthalmological procedures. Sensation of pain is locally and reversibly reduced, with the possibility of temperature and pressure sensitivity also affected. Anaesthetic activity is ten times that of cocaine and twice that of tetracaine (amethocaine). Oxybuprocaine (benoxinate) binds to sodium channel and reversibly stabilizes the neuronal membrane which decreases its permeability to sodium ions. Depolarization of the neuronal membrane is inhibited thereby blocking the initiation and conduction of nerve impulses.
Status:
US Approved Rx
(1962)
Source:
NDA050356
(1962)
Source URL:
First approved in 1953
Source:
BIOMYDRIN W/HC THONZONIUM BROMIDE by BW
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Thonzonium Bromide is a cationic surface-active compound. As an additive to pharmacologic formulations, thonzonium bromide causes dispersion and penetration of cellular debris and exudate, thereby promoting tissue contact of the administered medication. Thonzonium
bromide is a component of FDA-approved Coly-Mycin S Otic, used for treating infections of the ear caused by certain bacteria. It has being shown that Thonzonium bromide inhibits RANKL-induced osteoclast formation and bone resorption in vitro and prevents LPS-induced bone loss in vivo, suggesting that Thonzonium bromide might be a useful alternative therapy in preventing or treating osteolytic diseases..
Status:
US Approved Rx
(2021)
Source:
ANDA211271
(2021)
Source URL:
First approved in 1953
Source:
NDA008578
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Pyrimethamine, sold under the trade name Daraprim, is one of the folic acid antagonists that is used as an antimalarial or with a sulfonamide to treat toxoplasmosis. In addition it was approved in Chemoprophylaxis of Malaria. However, resistance to pyrimethamine is prevalent worldwide. It is not suitable as a prophylactic agent for travelers to most areas. Pyrimethamine is well absorbed with peak levels occurring between 2 to 6 hours following administration. It is eliminated slowly and has a plasma half-life of approximately 96 hours. Pyrimethamine is 87% bound to human plasma proteins. Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase and the rationale for its therapeutic action is based on the differential requirement between host and parasite for nucleic acid precursors involved in growth. This activity is highly selective against plasmodia and Toxoplasma gondii. Pyrimethamine possesses blood schizonticidal and some tissue schizonticidal activity against malaria parasites of humans. The action of pyrimethamine against Toxoplasma gondii is greatly enhanced when used in conjunction with sulfonamides.