U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 111 - 120 of 669 results

Naloxone, sold under the brand name Narcan among others, is a medication used to block the effects of opioids, especially in overdose. Naloxone has an extremely high affinity for μ-opioid receptors in the central nervous system (CNS). Naloxone is a μ-opioid receptor (MOR) inverse agonist, and its rapid blockade of those receptors often produces rapid onset of withdrawal symptoms. Naloxone also has an antagonist action, though with a lower affinity, at κ- (KOR) and δ-opioid receptors (DOR). If administered in the absence of concomitant opioid use, no functional pharmacological activity occurs (except the inability for the body to combat pain naturally). In contrast to direct opiate agonists, which elicit opiate withdrawal symptoms when discontinued in opiate-tolerant people, no evidence indicates the development of tolerance or dependence on naloxone. The mechanism of action is not completely understood, but studies suggest it functions to produce withdrawal symptoms by competing for opiate receptor sites within the CNS (a competitive antagonist, not a direct agonist), thereby preventing the action of both endogenous and xenobiotic opiates on these receptors without directly producing any effects itself. When administered parenterally (e.g. intravenously or by injection), as is most common, naloxone has a rapid distribution throughout the body. The mean serum half-life has been shown to range from 30 to 81 minutes, shorter than the average half-life of some opiates, necessitating repeat dosing if opioid receptors must be stopped from triggering for an extended period. Naloxone is primarily metabolized by the liver. Its major metabolite is naloxone-3-glucuronide, which is excreted in the urine. Naloxone is useful both in acute opioid overdose and in reducing respiratory or mental depression due to opioids. Whether it is useful in those in cardiac arrest due to an opioid overdose is unclear. Naloxone is poorly absorbed when taken by mouth, so it is commonly combined with a number of oral opioid preparations, including buprenorphine and pentazocine, so that when taken orally, just the opioid has an effect, but if misused by injecting, the naloxone blocks the effect of the opioid. In a meta-analysis of people with shock, including septic, cardiogenic, hemorrhagic, or spinal shock, those who received naloxone had improved blood flow. Naloxone is also experimentally used in the treatment for congenital insensitivity to pain with anhidrosis, an extremely rare disorder (one in 125 million) that renders one unable to feel pain or differentiate temperatures. Naloxone can also be used as an antidote in overdose of clonidine, a medication that lowers blood pressure.
Flucytosine (5-flucytosine, Ancobon) is an antifungal agent used for treatment of serious fungal infections caused by Candida or Cryptococcus. A fluorinated cytosine analog it was originally developed as an anti-tumor agent, but was found to be non-effective against tumors. Monotherapy with 5-FC is limited because of the frequent development of pathogens resistance. It is often used in in combination with amphotericin B. The severe side effects of 5-flucytosine include hepatotoxicity and bone-marrow depression. 5-fluorocytosine is a prodrug to the cytotoxic compound 5-fluorouracil. Although the exact mode of action is unknown, it has been proposed that flucytosine acts directly on fungal organisms by competitive inhibition of purine and pyrimidine uptake and indirectly by intracellular metabolism to 5-fluorouracil. Flucytosine is taken up by fungal organisms via the enzyme cytosine permease. Inside the fungal cell, flucytosine is rapidly converted to fluorouracil by the enzyme cytosine deaminase. Fluorouracil exerts its antifungal activity through the subsequent conversion into several active metabolites, which inhibit protein synthesis by being falsely incorporated into fungal RNA or interfere with the biosynthesis of fungal DNA through the inhibition of the enzyme thymidylate synthetase.
Status:
First approved in 1970

Class (Stereo):
CHEMICAL (ACHIRAL)



Flavoxate is a drug, indicated for symptomatic relief of dysuria, urgency, nocturia, suprapubic pain, frequency and incontinence as may occur in cystitis, prostatitis, urethritis, urethrocystitis/urethrotrigonitis. Flavoxate is not indicated for definitive treatment, but is compatible with drugs used for the treatment of urinary tract infections. It was approved for use in the United States in 1970 and continues to be used. Drug acts as a direct antagonist at muscarinic acetylcholine receptors in cholinergically innervated organs. Its anticholinergic-parasympatholytic action reduces the tonus of smooth muscle in the bladder, effectively reducing the number of required voids, facilitating increased volume per void. Common side effects are those of parasympathetic stimulation and include dryness of the mouth and eyes, decreased sweating, headache, visual blurring, constipation, urinary retention, impotence, tachycardia and palpitations, anxiety, restlessness and in some instances agitation and delusions.
Status:
First approved in 1970

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:
First approved in 1968

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Fentanyl is a potent agonist of mu opioid receptor. It is used to relieve severe pain, such as after surgery or during cancer treatment, and breakthrough pain (flare-ups of intense pain despite round-the-clock narcotic treatment). Fentanyl is an extremely powerful analgesic, 50–100-times more potent than morphine. Fentanyl harbors massive risk for addiction and abuse regardless of its prescription form. Fentanyl abuse is especially dangerous to those without a tolerance to opioids. The substance’s already elevated risk of overdose is multiplied when someone without a tolerance abuses it.
Status:
First approved in 1968
Source:
Veracillin by Ayerst
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dicloxacillin sodium USP is a semisynthetic antibiotic substance which resists destruction by the enzyme penicillinase (beta-lactamase). It is monosodium (2S,5R,6R)-6-[3-(2,6-dichlorophenyl)-5-methyl-4- isoxazolecarboxamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0]heptane-2-carboxylate monohydrate. Like other β-lactam antibiotics, dicloxacillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. Dicloxacillin is administered orally via capsule form or powder for reconstitution.
Norgestrel is synthetic steroidal progestin that is used in combination with ethinyl estradiol for oral contraception. Norgestrel is composed of a racemic mixture of two stereoisomers, dextronorgestrel and levonorgestrel. However, only the levorotary enantiomer (levonorgestrel) is biologically active. Norgestrel (and more specifically the active stereoisomer levonorgestrel) binds to the progesterone and estrogen receptors within the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progestins like levonorgestrel will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. Loss of the LH surge inhibits ovulation and thereby prevents pregnancy. Norgestrel in combination with ethinyl estradiol is indicated for the prevention of pregnancy in women who elect to use this product as a method of contraception.
Azathioprine remains one of the most important and widely prescribed drugs for immunosuppression/immunomodulation in autoimmune disease over 30 years after its introduction. Azathioprine is licensed for the treatment of only a limited range of autoimmune disorders, which is probably a reflection on the age of the drug. Widening the license for a drug is both costly and time consuming, and it would make no commercial sense for manufacturers to do so, at this late stage of life, for azathioprine. However, azathioprine is now so well established as an immunomodulating drug in autoimmune disorders that it represents the gold standard by which other drugs are compared. Azathioprine is indicated as an adjunct for the prevention of rejection in renal homotransplantation. It is also indicated for the management of active rheumatoid arthritis to reduce signs and symptoms. The combined use of azathioprine tablets with disease modifying anti-rheumatic drugs (DMARDs) has not been studied for either added benefit or unexpected adverse effects. The use of azathioprine tablets with these agents cannot be recommended. Azathioprine is a pro-drug, converted in the body to the active metabolite 6-mercaptopurine. Azathioprine acts to inhibit purine synthesis necessary for the proliferation of cells, especially leukocytes and lymphocytes. It is a safe and effective drug used alone in certain autoimmune diseases, or in combination with other immunosuppressants in organ transplantation. Its most severe side effect is bone marrow suppression, and it should not be given in conjunction with purine analogues such as allopurinol. The enzyme thiopurine S-methyltransferase (TPMT) deactivates 6-mercaptopurine. Genetic polymorphisms of TPMT can lead to excessive drug toxicity, thus assay of serum TPMT may be useful to prevent this complication. Azathioprine is metabolized to 6-mercaptopurine (6-MP). Both compounds are rapidly eliminated from blood and are oxidized or methylated in erythrocytes and liver; no azathioprine or mercaptopurine is detectable in urine after 8 hours. Activation of 6-mercaptopurine occurs via hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and a series of multi-enzymatic processes involving kinases to form 6-thioguanine nucleotides (6-TGNs) as major metabolites.
Propranolol is a nonselective, beta-adrenergic receptor-blocking agent possessing no other autonomic nervous system activity. At dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. Among the factors that may be involved in contributing to the antihypertensive action include: (1) decreased cardiac output, (2) inhibition of renin release by the kidneys, and (3) diminution of tonic sympathetic nerve outflow from vasomotor centers in the brain. Although total peripheral resistance may increase initially, it readjusts to or below the pretreatment level with chronic use of propranolol. Effects of propranolol on plasma volume appear to be minor and somewhat variable. In angina pectoris, propranolol generally reduces the oxygen requirement of the heart at any given level of effort by blocking the catecholamine-induced increases in the heart rate, systolic blood pressure, and the velocity and extent of myocardial contraction. Propranolol may increase oxygen requirements by increasing left ventricular fiber length, end diastolic pressure, and systolic ejection period. The net physiologic effect of beta-adrenergic blockade is usually advantageous and is manifested during exercise by delayed onset of pain and increased work capacity. Propranolol exerts its antiarrhythmic effects in concentrations associated with beta-adrenergic blockade, and this appears to be its principal antiarrhythmic mechanism of action. In dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain. The mechanism of the anti-migraine effect of propranolol has not been established. Propranolol is indicated in the management of hypertension. It may be used alone or used in combination with other antihypertensive agents, particularly a thiazide diuretic. Also is indicated to decrease angina frequency and increase exercise tolerance in patients with angina pectoris; for the prophylaxis of common migraine headache. In addition, is used to improve NYHA functional class in symptomatic patients with hypertrophic subaortic stenosis. Due to the high penetration across the blood–brain barrier, propranolol causes sleep disturbances such as insomnia and vivid dreams, and nightmares. Dreaming (rapid eye movement sleep, REM) was reduced and increased awakening.
Haloperidol is a phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and Tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of Huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. Haloperidol also exerts sedative and antiemetic activity. Haloperidol principal pharmacological effects are similar to those of piperazine-derivative phenothiazines. The drug has action at all levels of the central nervous system-primarily at subcortical levels-as well as on multiple organ systems. Haloperidol has strong antiadrenergic and weaker peripheral anticholinergic activity; ganglionic blocking action is relatively slight. It also possesses slight antihistaminic and antiserotonin activity. The precise mechanism whereby the therapeutic effects of haloperidol are produced is not known, but the drug appears to depress the CNS at the subcortical level of the brain, midbrain, and brain stem reticular formation. Haloperidol seems to inhibit the ascending reticular activating system of the brain stem (possibly through the caudate nucleus), thereby interrupting the impulse between the diencephalon and the cortex. The drug may antagonize the actions of glutamic acid within the extrapyramidal system, and inhibitions of catecholamine receptors may also contribute to haloperidol's mechanism of action. Haloperidol may also inhibit the reuptake of various neurotransmitters in the midbrain, and appears to have a strong central antidopaminergic and weak central anticholinergic activity. The drug produces catalepsy and inhibits spontaneous motor activity and conditioned avoidance behaviours in animals. The exact mechanism of antiemetic action of haloperidol has also not been fully determined, but the drug has been shown to directly affect the chemoreceptor trigger zone (CTZ) through the blocking of dopamine receptors in the CTZ. Haloperidol is marketed under the trade name Haldol among others.

Showing 111 - 120 of 669 results