U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS
This repository is under review for potential modification in compliance with Administration directives.

Details

Stereochemistry ACHIRAL
Molecular Formula C21H23ClFNO2
Molecular Weight 375.864
Optical Activity NONE
Defined Stereocenters 0 / 0
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of HALOPERIDOL

SMILES

OC1(CCN(CCCC(=O)C2=CC=C(F)C=C2)CC1)C3=CC=C(Cl)C=C3

InChI

InChIKey=LNEPOXFFQSENCJ-UHFFFAOYSA-N
InChI=1S/C21H23ClFNO2/c22-18-7-5-17(6-8-18)21(26)11-14-24(15-12-21)13-1-2-20(25)16-3-9-19(23)10-4-16/h3-10,26H,1-2,11-15H2

HIDE SMILES / InChI

Description

Haloperidol is a phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and Tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of Huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. Haloperidol also exerts sedative and antiemetic activity. Haloperidol principal pharmacological effects are similar to those of piperazine-derivative phenothiazines. The drug has action at all levels of the central nervous system-primarily at subcortical levels-as well as on multiple organ systems. Haloperidol has strong antiadrenergic and weaker peripheral anticholinergic activity; ganglionic blocking action is relatively slight. It also possesses slight antihistaminic and antiserotonin activity. The precise mechanism whereby the therapeutic effects of haloperidol are produced is not known, but the drug appears to depress the CNS at the subcortical level of the brain, midbrain, and brain stem reticular formation. Haloperidol seems to inhibit the ascending reticular activating system of the brain stem (possibly through the caudate nucleus), thereby interrupting the impulse between the diencephalon and the cortex. The drug may antagonize the actions of glutamic acid within the extrapyramidal system, and inhibitions of catecholamine receptors may also contribute to haloperidol's mechanism of action. Haloperidol may also inhibit the reuptake of various neurotransmitters in the midbrain, and appears to have a strong central antidopaminergic and weak central anticholinergic activity. The drug produces catalepsy and inhibits spontaneous motor activity and conditioned avoidance behaviours in animals. The exact mechanism of antiemetic action of haloperidol has also not been fully determined, but the drug has been shown to directly affect the chemoreceptor trigger zone (CTZ) through the blocking of dopamine receptors in the CTZ. Haloperidol is marketed under the trade name Haldol among others.

CNS Activity

Originator

Approval Year

Targets

Primary TargetPharmacologyConditionPotency
17.0 nM [EC50]
53.0 nM [EC50]

Conditions

ConditionModalityTargetsHighest PhaseProduct
Primary
HALDOL
Primary
HALDOL

Drug as perpetrator​

Drug as victim

Tox targets

PubMed

Sample Use Guides

In Vivo Use Guide
Parenteral medication, administered intramuscularly in doses of 2 to 5 mg, is utilized for prompt control of the acutely agitated schizophrenic patient with moderately severe to very severe symptoms. Depending on the response of the patient, subsequent doses may be given, administered as often as every hour, although 4 to 8 hour intervals may be satisfactory.
Route of Administration: Intramuscular
In Vitro Use Guide
10 uM Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in murineperitoneal macrophages.