{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for penicillin root_codes_comments in Code Comments (approximate match)
Status:
US Approved Rx
(2001)
Source:
ANDA075735
(2001)
Source URL:
First approved in 1967
Source:
TALWIN by HOSPIRA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Pentazocine is a synthetically prepared prototypical mixed agonist-antagonist narcotic (opioid analgesic) drug of the benzomorphan class of opioids used to treat moderate to moderately severe pain. Pentazocine is sold under several brand names, such as Fortral, Sosegon, Talwin NX. Pentazocine acts as an agonist of κ-opioid receptors and as an antagonist of μ-opioid receptors. This compound may exist as one of two enantiomers, named (+)-pentazocine and (−)-pentazocine. Side effects are similar to those of morphine, but pentazocine, due to its action at the kappa opioid receptor is more likely to invoke psychotomimetic effects. High dose may cause high blood pressure or high heart rate.
Status:
US Approved Rx
(2003)
Source:
ANDA076645
(2003)
Source URL:
First approved in 1966
Source:
ANDA074623
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Lactulose is a non-absorbable sugar used in the treatment of constipation and hepatic encephalopathy. It is a disaccharide (double-sugar) formed from one molecule each of the simple sugars (monosaccharides) fructose and galactose. Lactulose is not normally present in raw milk but is a product of heat-processed: the greater the heat, the greater amount of this substance. Lactulose is not absorbed in the small intestine nor broken down by human enzymes, thus stays in the digestive bolus through most of its course, causing retention of water through osmosis leading to softer, easier to pass stool. It has a secondary laxative effect in the colon, where it is fermented by the gut flora, producing metabolites which have osmotic powers and peristalsis-stimulating effects (such as acetate), but also methane associated with flatulence. Lactulose is metabolized in the colon by bacterial flora to short chain fatty acids including lactic acid and acetic acid. These partially dissociate, acidifying the colonic contents (increasing the H+ concentration in the gut).[14] This favors the formation of the nonabsorbable NH+4 from NH3, trapping NH3 in the colon and effectively reducing plasma NH3 concentrations. Lactulose is used in the treatment of chronic constipation in patients of all ages as a long-term treatment. Lactulose is used for chronic idiopathic constipation, i.e. chronic constipation occurring without any identifiable cause. Lactulose may be used to counter the constipating effects of opioids, and in the symptomatic treatment of hemorrhoids as a stool softener.
Status:
US Approved Rx
(2007)
Source:
ANDA078253
(2007)
Source URL:
First approved in 1966
Source:
NDA016084
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Allopurinol is a xanthine oxidase inhibitor used to decrease high blood uric acid levels. Allopurinol is specifically used to prevent gout, prevent specific types of kidney stones, and for the high uric acid levels that can occur with chemotherapy. Allopurinol acts on purine catabolism, without disrupting the biosynthesis of purines. It reduces the production of uric acid by inhibiting the biochemical reactions immediately preceding its formation. Allopurinol is a structural analog of the natural purine base, hypoxanthine. It is an inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to xanthine and of xanthine to uric acid, the end product of purine metabolism in man. Allopurinol is metabolized to the corresponding xanthine analog, oxypurinol (Allopurinol), which also is an inhibitor of xanthine oxidase. Allopurinol is taken by mouth or injected into a vein. Common side effects, when used by mouth, include itchiness and rash. Common side effects when used by injection include vomiting and kidney problems.
Status:
US Approved Rx
(2014)
Source:
ANDA203428
(2014)
Source URL:
First approved in 1966
Source:
NDA016273
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Status:
US Approved Rx
(2009)
Source:
ANDA079175
(2009)
Source URL:
First approved in 1965
Source:
INDOCIN by ZYLA LIFE SCIENCES
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Indometacin (INN and BAN) or indomethacin (AAN, USAN, and former BAN) is a nonsteroidal anti-inflammatory drug (NSAID) commonly used as a prescription medication to reduce fever, pain, stiffness, and swelling from inflammation. Indomethacin has analgesic, anti-inflammatory, and antipyretic properties. The mechanism of action of Indometacin, like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2). Indomethacin is a potent inhibitor of prostaglandin synthesis in vitro. Indomethacin concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because indomethacin is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues. Indometacin is indicated for: Moderate to severe rheumatoid arthritis including acute flares of chronic disease, Moderate to severe ankylosing spondylitis, Moderate to severe osteoarthritis, Acute painful shoulder (bursitis and/or tendinitis), Acute gouty arthritis. In general, adverse effects seen with indomethacin are similar to all other NSAIDs. For instance, indometacin inhibits both cyclooxygenase-1 and cyclooxygenase-2, it inhibits the production of prostaglandins in the stomach and intestines, which maintain the mucous lining of the gastrointestinal tract. Indometacin, therefore, like other non-selective COX inhibitors can cause peptic ulcers. These ulcers can result in serious bleeding and/or perforation requiring hospitalization of the patient. To reduce the possibility of peptic ulcers, indomethacin should be prescribed at the lowest dosage needed to achieve a therapeutic effect, usually between 50–200 mg/day. It should always be taken with food. Nearly all patients benefit from an ulcer protective drug (e.g. highly dosed antacids, ranitidine 150 mg at bedtime, or omeprazole 20 mg at bedtime). Other common gastrointestinal complaints, including dyspepsia, heartburn and mild diarrhea are less serious and rarely require discontinuation of indomethacin.
Status:
US Approved Rx
(2012)
Source:
ANDA090580
(2012)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Nafcillin is a beta-lactam antibiotic of penicillin class. As a beta-lactamase-resistant penicillin, it is used to treat infections caused by Gram-positive bacteria, in particular, species of staphylococci that are resistant to other penicillins.
Status:
US Approved Rx
(1989)
Source:
ANDA070915
(1989)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Nalbuphine is a semi-synthetic opioid agonist-antagonist used commercially as an analgesic under a variety of trade names, including Nubain and Manfine. Nalbuphine is an agonist at kappa opioid receptors and an antagonist at mu opioid receptors. Nalbuphine analgesic potency is essentially equivalent to that of morphine on a milligram basis up to a dosage of approximately 30 mg. The opioid antagonist activity of Nalbuphine is one-fourth as potent as nalorphine and 10 times that of pentazocine. Nalbuphine is indicated for the management of pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Nalbuphine can also be used as a supplement to balanced anesthesia, for preoperative and postoperative analgesia, and for obstetrical analgesia during labor and delivery. The onset of action of Nalbuphine occurs within 2 to 3 minutes after intravenous administration, and in less than 15 minutes following subcutaneous or intramuscular injection. The plasma half-life of nalbuphine is 5 hours, and in clinical studies, the duration of analgesic activity has been reported to range from 3 to 6 hours. Like pure µ-opioids, the mixed agonist-antagonist opioid class of drugs can cause side effects with initial administration of the drug but which lessen over time (“tolerance”). This is particularly true for the side effects of nausea, sedation and cognitive symptoms. These side effects can in many instances be ameliorated or avoided at the time of drug initiation by titrating the drug from a tolerable starting dose up to the desired therapeutic dose. An important difference between nalbuphine and the pure mu-opioid analgesic drugs is the “ceiling effect” on respiration. Respiratory depression is a potentially fatal side effect from the use of pure mu opioids. Nalbuphine has limited ability to depress respiratory function.
Status:
US Approved Rx
(2017)
Source:
ANDA203385
(2017)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dactinomycin (actinomycin D) was isolated from Streptomyces by Selman Waksman in 1940s. The antibiotic shows anti-cancer activity; it was approved by FDA for the treatment of different cancer conditions among which are Ewing's sarcoma, Wilm's tumor, gestational trophoblastic disease, etc. Dactinomycin exerts its action by binding to DNA (preferably to GC motif) and thus inhibiting transcription.
Status:
US Approved Rx
(1988)
Source:
ANDA072079
(1988)
Source URL:
First approved in 1963
Source:
NDA013263
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Diazepam is a benzodiazepine first discovered at Hoffman-La Roche in the late 1950s. Diazepam was approved by FDA for the treatment of anxiety disorders as well as for such conditions as skeletal muscle spasm, alcohol withdrawal syndrom and convulsions (under the most known brand Valium). The drug acts by binding to GABA-A receptors and potentiating GABA evoked current. Chronic diazepam use is associated with tolerance, dependence, and withdrawal.
Status:
US Approved Rx
(2016)
Source:
ANDA208162
(2016)
Source URL:
First approved in 1963
Source:
FLAGYL by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.