U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 111 - 120 of 4342 results

Fludarabine or fludarabine phosphate is a chemotherapy drug used in the treatment of hematological malignancies (cancers of blood cells such as leukemias and lymphomas). It is a purine analog, which interferes with DNA synthesis. Fludarabine phosphate is a fluorinated nucleotide analog of the antiviral agent vidarabine, 9-β-D-arabinofuranosyladenine (ara-A), that is relatively resistant to deamination by adenosine deaminase. Fludarabine (marketed as fludarabine phosphate under the trade name Fludara) is a chemotherapy drug used in the treatment of hematological malignancies. Fludarabine phosphate is rapidly dephosphorylated to 2-fluoro-ara-A and then phosphorylated intracellularly by deoxycytidine kinase to the active triphosphate, 2-fluoro-ara-ATP. This metabolite appears to act by inhibiting DNA polymerase alpha, ribonucleotide reductase and DNA primase, thus inhibiting DNA synthesis. The mechanism of action of this antimetabolite is not completely characterized and may be multi-faceted.
Ticlopidine (trade name Ticlid) is an antiplatelet drug in the thienopyridine family which is an adenosine diphosphate (ADP) receptor inhibitor. Ticlopidine is a prodrug that is metabolized to an as yet undetermined metabolite that acts as a platelet aggregation inhibitor. Inhibition of platelet aggregation causes a prolongation of bleeding time. In its prodrug form, ticlopidine has no significance in vitro activity at the concentrations attained in vivo. The active metabolite of ticlopidine prevents binding of adenosine diphosphate (ADP) to its platelet receptor, impairing the ADP-mediated activation of the glycoprotein GPIIb/IIIa complex. It is proposed that the inhibition involves a defect in the mobilization from the storage sites of the platelet granules to the outer membrane. No direct interference occurs with the GPIIb/IIIa receptor. As the glycoprotein GPIIb/IIIa complex is the major receptor for fibrinogen, its impaired activation prevents fibrinogen binding to platelets and inhibits platelet aggregation. Ticlopidine is FDA approved for the prevention of strokes and, when combined with aspirin, for patients with a new coronary stent to prevent closure. There are also several off-label uses, including acute treatment of myocardial infarction and unstable angina, peripheral vascular disease, prevention of myocardial infarctions, diabetic retinopathy, and sickle cell disease. The most serious side effects associated with ticlopidine are those that affect the blood cells, although these life-threatening complications are relatively rare.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pentostatin, also known as 2’-deoxycoformycin (DCF) under the trade name Nipent, is a potent inhibitor of the enzyme adenosine deaminase and is isolated from fermentation cultures of Streptomyces antibioticus. It was developed by Parke-Davis (now Pfizer) and the National Cancer Institute in the US. Nipent is indicated as single-agent treatment for both untreated and alpha-interferon-refractory hairy cell leukemia patients with active disease as defined by clinically significant anemia, neutropenia, thrombocytopenia, or disease-related symptoms. Pentostatin is a potent transition state inhibitor of the enzyme adenosine deaminase (ADA). The greatest activity of ADA is found in cells of the lymphoid system with T-cells having higher activity than B-cells, and T-cell malignancies having higher ADA activity than B-cell malignancies. Pentostatin inhibition of ADA, particularly in the presence of adenosine or deoxyadenosine, leads to cytotoxicity, and this is believed to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Pentostatin can also inhibit RNA synthesis as well as cause increased DNA damage. In addition to elevated dATP, these mechanisms may also contribute to the overall cytotoxic effect of pentostatin. The precise mechanism of pentostatin’s antitumor effect, however, in hairy cell leukemia is not known. In several instances, hepatic toxicity from pentostatin appeared to be somewhat dose related, suggesting that the liver injury is a direct effect of the purine analogue. Because pentostatin is a potent immunosuppressive agent, the possibility exists that some cases of hepatic injury are due to reactivation of hepatitis B or other opportunistic infections. While pentostatin has not been shown to cause reactivation of hepatitis B, there is a strong possibility that it might induce this syndrome, and several cases of hepatic injury during pentostatin therapy were described as due to concurrent hepatitis B.
Felodipine is a long-acting 1,4-dihydropyridine calcium channel blocker (CCB)b. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, felodipine prevents calcium-dependent myocyte contraction and vasoconstriction. Felodipine is the most potent CCB in use and is unique in that it exhibits fluorescent activity. In addition to binding to L-type calcium channels, felodipine binds to a number of calcium-binding proteins, exhibits competitive antagonism of the mineralcorticoid receptor, inhibits the activity of calmodulin-dependent cyclic nucleotide phosphodiesterase, and blocks calcium influx through voltage-gated T-type calcium channels. Felodipine is used to treat mild to moderate essential hypertension.
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ABSOLUTE)



Idarubicin is an antineoplastic in the anthracycline class.Idarubicin hydrochloride is a DNA-intercalating analog of daunorubicin which has an inhibitory effect on nucleic acid synthesis and interacts with the enzyme topoisomerase II. The absence of a methoxy group at position 4 of the anthracycline structure gives the compound a high lipophilicity which results in an increased rate of cellular uptake compared with other anthracyclines.Idarubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Idarubicin in combination with other approved antileukemic drugs is indicated for the treatment of acute myeloid leukemia (AML) in adults.
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Estazolam, a triazolobenzodiazepine derivative, is an oral hypnotic agent with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Used for the short-term management of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Marketed under the brand names ProSom, Eurodin.
Status:
First approved in 1989

Class (Stereo):
CHEMICAL (ACHIRAL)



Flutamide is a nonsteroidal antiandrogen. In animal studies, flutamide demonstrates potent antiandrogenic effects. It exerts its antiandrogenic action by inhibiting androgen uptake and/or by inhibiting nuclear binding of androgen in target tissues or both. Prostatic carcinoma is known to be androgen-sensitive and responds to treatment that counteracts the effect of androgen and/or removes the source of androgen, e.g. castration. Elevations of plasma testosterone and estradiol levels have been noted following flutamide administration. Flutamide blocks the action of both endogenous and exogenous testosterone by binding to the androgen receptor. In addition Flutamide is a potent inhibitor of testosterone-stimulated prostatic DNA synthesis. Moreover, it is capable of inhibiting prostatic nuclear uptake of androgen. Flutamide is used for the management of locally confined Stage B2-C and Stage D2 metastatic carcinoma of the prostate.
Status:
First approved in 1989

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Carboplatin is an organoplatinum compound that possesses antineoplastic activity. Carboplatin is an intravenously administered platinum coordination complex and alkylating agent, which is used as a chemotherapeutic agent for the treatment of various cancers, mainly of advanced ovarian. Carboplatin is indicated for the palliative treatment of patients with ovarian carcinoma recurrent after prior chemotherapy, including patients who have been previously treated with cisplatin. In addition this drug can be used to treat others cancers. Carboplatin therapy is associated with a low rate of transient serum aminotransferase elevations and with rare instances of clinically apparent liver injury. Carboplatin, like cisplatin, produces predominantly interstrand DNA cross-links rather than DNA-protein cross-links. This effect is apparently cell-cycle nonspecific. The aquation of carboplatin, which is thought to produce the active species, occurs at a slower rate than in the case of cisplatin. Despite this difference, it appears that both carboplatin and cisplatin induce equal numbers of drug-DNA cross-links, causing equivalent lesions and biological effects.
Propafenone (brand name Rythmol SR or Rytmonorm) is a class 1C anti-arrhythmic medication, which treats illnesses associated with rapid heartbeats such as atrial and ventricular arrhythmias. The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. Propafenone is metabolized primarily in the liver. Because of its short half-life, it requires dosing two or three times daily to maintain steady blood levels. The long-term safety of propafenone is unknown. Because it is structurally similar to another anti-arrhythmic medicine, flecainide, similar cautions should be exercised in its use. Flecainide and propafenone, like other antiarrhythmic drugs, have been shown to increase the occurrence of arrhythmias (5.3% for propafenone, Teva physician prescribing information), primarily in patients with underlying heart disease. However, their use in structurally normal hearts is considered safe.
Clozapine was discovered in 1958 by an anesthetist and now it is used for the treatment of schizophrenia. Although the exact mechanism of its action is unknown, the effect of clozapine on schizophrenia is associated with inhibition of dopamine D2 and serotonin 2A receptors.