U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 10841 - 10850 of 11278 results

Status:
US Approved Allergenic Extract (1994)

Class (Stereo):
CHEMICAL (ABSOLUTE)


Tixocortol is a synthetic steroid with topical anti-inflammatory properties. In form of Tixocortol pivalate, also known as Pivalone, it is used to treat the inflammatory and allergic manifestations of the rhino-pharynx: allergic rhinitis, acute and chronic congestive rhinitis, vasomotor rhinitis. In addition, it has been shown to be a useful agent for assessing corticosteroid contact dermatitis, particularly for hydrocortisone-type derivatives. Labeled adverse effects are: itchy nose, dryness of the nasal mucosa, edema of the face mucosa, cataract, glaucoma, Cushing syndrome, skin thinning.
Geraniol is a dietary monoterpene alcohol that is found in the essential oils of aromatic plants. To date, experimental evidence supports the therapeutic or preventive effects of geraniol on different types of cancer, such as breast, lung, colon, prostate, pancreatic, and hepatic cancer, and has revealed the mechanistic basis for its pharmacological actions. In addition, geraniol sensitizes tumor cells to commonly used chemotherapy agents. Geraniol controls a variety of signaling molecules and pathways that represent tumor hallmarks; these actions of geraniol constrain the ability of tumor cells to acquire adaptive resistance against anticancer drugs. It has been shown that geraniol inhibits HMG-CoA reductase in most types of tumor cells, which raises the possibility that the reduced prenylation of small G-proteins, such as Ras or RhoA, accounts for the antitumor effects of geraniol. In addition to its use in various commercial products, including cosmetics and fine fragrances, geraniol exerts a broad spectrum of pharmacological activities, such as anti-microbial, anti-inflammatory, anti-oxidant, anti-ulcer and neuroprotective activities. Geraniol is classified into the generally recognized-as-safe (GRAS) category by the Flavor and Extract Manufacturers Association (FEMA) and the Food and Drug Administration (FDA) of the United States.
Status:
US Previously Marketed
First approved in 2022

Class (Stereo):
CHEMICAL (ABSOLUTE)


Tauroursodeoxycholic acid (TUDCA) is an endogenous hydrophilic bile acid used clinically to treat certain liver diseases. It is approved in Italy and Turkey for the treatment of cholesterol gallstones and is an investigational drug in China, Unites States, and Italy. Tauroursodeoxycholic acid is being investigated for use in several conditions such as Primary Biliary Cirrhosis (PBC), insulin resistance, amyloidosis, Cystic Fibrosis, Cholestasis, and Amyotrophic Lateral Sclerosis. Tauroursodeoxycholate (TUDC) promote choleresis by triggering the insertion of transport proteins for bile acids into the canalicular and basolateral membranes of hepatocytes. In addition, Tauroursodeoxycholate exerts hepatoprotective and anti-apoptotic effects, can counteract the action of toxic bile acids and reduce endoplasmic reticulum stress. Tauroursodeoxycholate can also initiate the differentiation of multipotent mesenchymal stem cells (MSC) including hepatic stellate cells and promote their development into hepatocyte-like cells. Although the hepatoprotective and choleretic action of TUDC is empirically used in clinical medicine since decades, the underlying molecular mechanisms remained largely unclear.
Status:
US Previously Marketed
First approved in 2022

Class (Stereo):
CHEMICAL (ABSOLUTE)


Tauroursodeoxycholic acid (TUDCA) is an endogenous hydrophilic bile acid used clinically to treat certain liver diseases. It is approved in Italy and Turkey for the treatment of cholesterol gallstones and is an investigational drug in China, Unites States, and Italy. Tauroursodeoxycholic acid is being investigated for use in several conditions such as Primary Biliary Cirrhosis (PBC), insulin resistance, amyloidosis, Cystic Fibrosis, Cholestasis, and Amyotrophic Lateral Sclerosis. Tauroursodeoxycholate (TUDC) promote choleresis by triggering the insertion of transport proteins for bile acids into the canalicular and basolateral membranes of hepatocytes. In addition, Tauroursodeoxycholate exerts hepatoprotective and anti-apoptotic effects, can counteract the action of toxic bile acids and reduce endoplasmic reticulum stress. Tauroursodeoxycholate can also initiate the differentiation of multipotent mesenchymal stem cells (MSC) including hepatic stellate cells and promote their development into hepatocyte-like cells. Although the hepatoprotective and choleretic action of TUDC is empirically used in clinical medicine since decades, the underlying molecular mechanisms remained largely unclear.
Yohimbine is a plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of impotence. The exact mechanism for its use in impotence has not been fully elucidated. Yohimbine exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and hD(2) sites, partial agonist actions at h5-HT(1A) sites. Yohimbine-mediated norepinephrine release at the level of the corporeal tissues may also be involved. In addition, beneficial effects may involve other neurotransmitters such as dopamine and serotonin and cholinergic receptors. Yohimbine has a mild anti-diuretic action, probably via stimulation of hypothalmic center and release of posterior pituitary hormone. Reportedly yohimbine exerts no significant influence on cardiac stimulation and other effects mediated by (beta)-adrenergic receptors. Its effect on blood pressure, if any, would be to lower it; however, no adequate studies are at hand to quantitate this effect in terms of Yohimbine dosage. Side effect of Yohimbine include anxiety, tremor, palpitations, diarrhea, and supine hypertension.

Showing 10841 - 10850 of 11278 results