{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "VATC|CARDIAC THERAPY" in comments (approximate match)
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Bucladesine is a cyclic nucleotide derivative which mimics the action of endogenous cAMP and is a phosphodiesterase inhibitor. The compound is used in a wide variety of research applications because it mimics cAMP and can induce normal physiological responses when added to cells in experimental conditions. cAMP is only able to elicit minimal responses in these situations. The neurite outgrowth instigated by bucladesine in cell cultures has been shown to be enhanced by nardosinone. Recently, the effect of bucladesine as a cAMP analog has been studied on the pentylenetetrazol-induced seizure in the wild-type mice. The data showed that bucladesine (300nM/mouse) reduced the seizure latency and threshold. In addition they found that combination of bucladesine and pentoxyfillin has additive effect on seizure latency and threshold. Bucladesine is more lipophilic than cAMP and in contrast to cAMP capable of penetrating cell membranes. Bucladesine interferes with different protein kinases which are normally activated by cAMP. Bucladesine has undergone in the past clinical developments as systemic treatment for cardioprotection and as topical treatment to improve wound healing. In Japan, a bucladesine ointment (Actosin® ointment; Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan) was marketed to treat skin ulcers. Clinical studies have shown favourable effects on diabetic foot ulcers or decubitus, but the compound was later withdrawn despite good tolerability. One possible reason for the withdrawal may be the odour of the cream formulation which can be related to the hydrolytic cleavage in aqueous solutions resulting in release of butyric acid.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Nicorandil is a derivative of the niacinamide that is structurally combined with an organic nitrate. It provides a dual mode of action leading to relaxation of vascular smooth muscle. Nicorandil is a potassium-channel opener that causes vasodilatation of arterioles and large coronary arteries. Its nitrate-like properties produce venous vasodilation through stimulation of guanylate cyclase. Nicorandil has a direct effect on coronary arteries without leading to a steal phenomenon. The overall action improves blood flow to post-stenotic regions and the oxygen balance in the myocardium.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ajmaline, (also known by trade names Gilurytmal, Ritmos, and Aritmina) is an alkaloid found in the root of Rauwolfia serpentina, among other plant sources. It is a class Ia antiarrhythmic agent that apparently acts by changing the shape and threshold of cardiac action potentials. The class I antiarrhythmic agents interfere with the sodium channel. A class IA agent lengthens the action potential (right shift) which brings about improvement in abnormal heart rhythms. This drug in particular has a high affinity for the Nav 1.5 sodium channel. Ajmaline produces potent sodium channel blocking effects and a very short half-life which makes it a very useful drug for acute intravenous treatments. The drug has been very popular in some countries for the treatment of atrial fibrillation in patients with the Wolff–Parkinson–White syndrome and in well tolerated monomorphic ventricular tachycardias. It has also been used for many years as a drug to challenge the conduction system of the heart in cases of bundle branch block and syncope. In these cases, abnormal prolongation of the HV interval has been taken as a proof for infrahisian conduction defects tributary for permanent pacemaker implantation. Ajmaline is used as an antiarrhythmic agent.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Erythrityl Tetranitrate is a vasodilator indicated for the prevention of angina. Sold under the brand name Cardilate, Erythrityl Tetranitrate is used for the prophylaxis and long-term treatment of patients with frequent or recurrent anginal pain or coronary insufficiency and during the postcoronary convalescent period to hasten recovery. Similar to other nitrites and organic nitrates, erythrityl tetranitrate is converted to an active intermediate compound which activates the enzyme guanylate cyclase. This stimulates the synthesis of cyclic guanosine 3',5'-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. Erythrityl Tetranitrate is a is an atrial natriuretic peptide receptor agonist. Erythrityl tetranitrate is a physiologically effective long-acting agent in patients with coronary heart disease.
Status:
US Previously Marketed
Source:
NATRECOR by SCIOS LLC
(2001)
Source URL:
First approved in 2001
Source:
NDA020920
Source URL:
Class:
PROTEIN
Conditions:
Nesiritide is the recombinant form of the 32 amino acid human B-type natriuretic peptide (BNP), which is normally produced by the ventricular myocardium. Human BNP binds to the particulate guanylate cyclase receptor of vascular smooth muscle and endothelial cells, leading to increased intracellular concentrations of guanosine 3'5'-cyclic monophosphate (cGMP) and smooth muscle cell relaxation. Cyclic GMP serves as a second messenger to dilate veins and arteries. Nesiritid was sold under brand name Natrecor for the intravenous treatment of patients with acutely decompensated congestive heart failure who have dyspnea at rest or with minimal activity.
Status:
US Previously Marketed
Source:
Hypertensin by Novartis
(1961)
Source URL:
First approved in 1961
Source:
Hypertensin by Novartis
Source URL:
Class:
PROTEIN
Conditions:
Angiotensinamide is octapeptide amide of bovine angiotensin II used to increase blood pressure by vasoconstriction. Angiotensinamide is indicated for the treatment of severe hypotension unresponsive to traditional pressor agents. Angiotensinamide has a strong pressure effect, due to the increased peripheral resistance of blood vessels, especially small caliber arterioles. Under the influence of angiotensinamide, the vessels of the internal organs, skin, kidneys are particularly narrowed. Blood circulation in skeletal muscles and coronary vessels does not change significantly. The drug has no direct effect on the heart and does not cause arrhythmias in therapeutic doses. Angiotensinamide is rapidly inactivated by enzymes contained in the blood, and therefore, when administered once, it has a short-term (2–3 min) pressure effect. However, the duration of the effect can be relatively easily controlled by selecting the appropriate rate of administration of the drug solution.
Status:
Possibly Marketed Outside US
Class:
PROTEIN
Status:
US Previously Marketed
Source:
Digitalis U.S.P.
(1921)
Source URL:
First marketed in 1921
Class:
STRUCTURALLY DIVERSE
Status:
US Approved Rx
(2008)
Source:
NDA022161
(2008)
Source URL:
First approved in 2008
Source:
NDA022161
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Regadenoson (Lexiscan), a low affinity agonist of the A2A adenosine receptor, increases coronary blood flow (CBF) and mimics the increase in CBF caused by exercise. Myocardial uptake of the radiopharmaceutical is proportional to CBF creating the contrast required to identify stenotic coronary arteries. It is a pharmacologic stress agent indicated for radionuclide myocardial perfusion imaging (MPI) in patients unable to undergo adequate exercise stress. The most common adverse reactions to Lexiscan are dyspnea, headache, flushing, chest discomfort, dizziness, angina pectoris, chest pain, and nausea. Methylxanthines, e.g., caffeine and theophylline, may interfere with the activity of Lexiscan. Aminophylline may be used to attenuate severe and/or persistent adverse reactions to Lexiscan.
Status:
US Approved Rx
(2005)
Source:
ANDA077133
(2005)
Source URL:
First approved in 1976
Source:
VIRA-A by PARKEDALE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Adenosine is a nucleoside that is composed of adenine and d-ribose, occurring in all cells of the body and play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard (adenosine injection) is used as an initial treatment for the termination of paroxysmal supraventricular tachycardia (PVST), including that associated with accessory bypass tracts (Wolff-Parkinson-White Syndrome). When clinically advisable, appropriate vagal maneuvers. Adenocard does not convert atrial flutter, atrial fibrillation, or ventricular tachycardia to normal sinus rhythm. In the presence of atrial flutter or atrial fibrillation, a transient modest slowing of ventricular response may occur immediately following Adenocard administration. Adenosine slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore normal sinus rhythm. This effect may be mediated through the drug's activation of cell-surface A1 and A2 adenosine receptors. Adenocard is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenocard is not blocked by atropine. Adenosine also inhibits the slow inward calcium current and activation of adenylate cyclase in smooth muscle cells, thereby causing relaxation of vascular smooth muscle. By increasing blood flow in normal coronary arteries with little or no increase in stenotic arteries, adenosine produces a relative difference in thallous (thallium) chloride TI 201 uptake in myocardium supplied by normal verus stenotic coronary arteries.