U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 91 - 100 of 192 results

Orphenadrine is an anticholinergic drug of the ethanolamine antihistamine class used to treat muscle pain and to help with motor control in Parkinson's disease but has largely been superseded by newer drugs. Orphenadrine binds and inhibits both histamine H1 receptors and NMDA receptors. It restores the motor disturbances induced by neuroleptics, in particular, the hyperkinesia. The dopamine deficiency in the striatum increases the stimulating effects of the cholinergic system. This stimulation is counteracted by the anticholinergic effect of orphenadrine. It may have a relaxing effect on skeletal muscle spasms and it has a mood elevating effect. Orphenadrine is indicated as an adjunct to rest, physical therapy, and other measures for the relief of discomfort associated with acute painful musculoskeletal conditions. Orphenadrine is an anticholinergic with a predominantly central effect and only a weak peripheral effect. In addition, it has mild antihistaminic and local anesthetic properties. Parkinson's syndrome is the consequence of a disturbed balance between cholinergic and dopaminergic neurotransmission in the basal ganglia caused by a decrease in dopamine. Orphenadrine restores the physiological equilibrium and has a favorable effect on the rigidity and tremor of Parkinson's disease and Parkinsonian syndromes. Adverse reactions of orphenadrine citrate are mainly due to the mild anticholinergic action of orphenadrine citrate and are usually associated with higher dosage. Dryness of the mouth is usually the first adverse effect to appear. When the daily dose is increased, possible adverse effects include tachycardia, palpitation, urinary hesitancy or retention, blurred vision, dilatation of pupils, increased ocular tension, weakness, nausea, vomiting, headache, dizziness, constipation, drowsiness, hypersensitivity reactions, pruritus, hallucinations, agitation, tremor, gastric irritation and rarely urticaria and other dermatoses
Status:
First approved in 1957

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Methocarbamol is a central muscle relaxant for skeletal muscles, used to treat spasms. It is structurally related to guaifenesin. Methocarbamol's exact mechanism of causing skeletal muscle relaxation is unknown. It is thought to work centrally, perhaps by general depressant effects. It has no direct relaxant effects on striated muscle, nerve fibers, or the motor endplate. It will not directly relax contracted skeletal muscles. The drug has a secondary sedative effect. Methocarbamol is used for use as an adjunct to rest, physical therapy, and other measures for the relief of discomforts associated with acute, painful musculoskeletal conditions. Under the trade name Robaxin, Methocarbamol is marketed by Actient Pharmaceuticals in the United States and Pfizer in Canada.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Mesuximide (or methsuximide) is an anticonvulsant medication. It is sold by Pfizer under the name Petinutin. Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. Mesuximide is used for the control of absence (petit mal) seizures that are refractory to other drugs.
Mecamylamine (Inversine), the first orally available antihypertensive agent, is now rarely used. Introduced as a therapeutic agent for the treatment of hypertension in the 1950s, mecamylamine was the first useful ganglionic blocking agent that was not a quarternary ammonium compound. Mecamylamine is indicated for the management of moderately severe to severe essential hypertension and in uncomplicated cases of malignant hypertension. Mecamylamine reduces blood pressure in both normotensive and hypertensive individuals. A small oral dosage often produces a smooth and predictable reduction of blood pressure. Although this antihypertensive effect is predominantly orthostatic, the supine blood pressure is also significantly reduced. Mecamylamine is a nicotinic parasympathetic ganglionic blocker. Mecamylamine administration produces several deleterious side-effects at therapeutically relevant doses. As such, mecamylamine’s use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction.
Sorbitol is a polyhydric alcohol with about half the sweetness of sucrose. Sorbitol occurs naturally and is produced synthetically from glucose. It was formerly used as a diuretic and may still be used as a laxative and in irrigating solutions for some surgical procedures. Used as a non-stimulant laxative via an oral suspension or enema. Sorbitol exerts its laxative effect by drawing water into the large intestine, thereby stimulating bowel movements. Sorbitol plays a vital step in the 'polyol pathway'. The sudden injection of extra sorbitol can ruin the equilibrium of enzymes that regulate the conversion of glucose to fructose in a process associated with the onset of diabetes and its complications. Further, the polyol pathway is involved with a complex network of metabolic activities; disruption leads to a cascade of problems (citations here, here and here) such as mitochondrial failure, cell apoptosis (cell death), and DNA fragmentation. In general, sorbitol induces cell hyperosmotic stress resulting in phosphorylation (uptake of phosphorus into cell) — an important on/off switch regulating enzymes and signaling networks.
Chloroprocaine (Nesacaine®, Nesacaine®-MPF) is a non pyrogenic local anesthetic. Nesacaine® is indicated for the production of local anesthesia by infiltration and peripheral nerve block. It is not to be used for lumbar or caudal epidural anesthesia. Nesacaine®-MPF is indicated for the production of local anesthesia by infiltration, peripheral and central nerve block, including lumbar and caudal epidural blocks. Nesacaine® and Nesacaine®-MPF are not to be used for subarachnoid administration. Chloroprocaine (Nesacaine®, Nesacaine®-MPF), like other local anesthetics, blocks the generation and the conduction of nerve impulses, presumably by increasing the threshold for electrical excitation in the nerve, by slowing the propagation of the nerve impulse and by reducing the rate of rise of the action potential. It acts mainly by inhibiting sodium influx through voltage gated sodium channels in the neuronal cell membrane of peripheral nerves. When the influx of sodium is interrupted, an action potential cannot arise and signal conduction is thus inhibited.
Primidone is an anticonvulsant of the barbiturate class. It was introduced in 1954 under the brand name Mysoline by Wyeth in the United States. Mysoline, used alone or concomitantly with other anticonvulsants, is indicated in the control of grand mal, psychomotor, and focal epileptic seizures. It may control grand mal seizures refractory to other anticonvulsant therapy. Mysoline raises electro- or chemoshock seizure thresholds or alters seizure patterns in experimental animals. The mechanism(s) of primidone’s antiepileptic action is not known. Primidone per se has anticonvulsant activity, as do its two metabolites, phenobarbital and phenylethylmalonamide (PEMA). In addition to its anticonvulsant activity, PEMA potentiates the anticonvulsant activity of phenobarbital in experimental animals. Primidone itself doesn’t act on GABA-A receptors. It is active metabolite - phenobarbital primary acts via modulation of GABA -A receptors. The most frequently occurring early side effects are ataxia and vertigo. These tend to disappear with continued therapy, or with reduction of initial dosage. Occasionally, the following have been reported: nausea, anorexia, vomiting, fatigue, hyperirritability, emotional disturbances, sexual impotency, diplopia, nystagmus, drowsiness, and morbilliform skin eruptions.Granulocytopenia, agranulocytosis, and red-cell hypoplasia and aplasia, have been reported rarely. These and, occasionally, other persistant or severe side effects may necessitate withdrawal of the drug. Megaloblastic anemia may occur as a rare idiosyncrasy to Mysoline and to other anticonvulsants. The anemia responds to folic acid without necessity of discontinuing medication.
Methoxsalen — also called xanthotoxin, marketed under the trade names Oxsoralen, Deltasoralen, Meladinine — is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA (psoralen + UVA) light treatment. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically. The exact mechanism of action of methoxsalen with the epidermal melanocytes and keratinocytes is not known. The best known biochemical reaction of methoxsalen is with DNA. Methoxsalen, upon photoactivation, conjugates and forms covalent bonds with DNA which leads to the formation of both monofunctional (addition to a single strand of DNA) and bifunctional adducts (crosslinking of psoralen to both strands of DNA) Reactions with proteins have also been described. Methoxsalen acts as a photosensitizer. Administration of the drug and subsequent exposure to UVA can lead to cell injury. Orally administered methoxsalen reaches the skin via the blood and UVA penetrates well into the skin. If sufficient cell injury occurs in the skin, an inflammatory reaction occurs. The most obvious manifestation of this reaction is delayed erythema, which may not begin for several hours and peaks at 48–72 hours. The inflammation is followed, over several days to weeks, by repair which is manifested by increased melanization of the epidermis and thickening of the stratum corneum. The mechanisms of therapy are not known. In the treatment of vitiligo, it has been suggested that melanocytes in the hair follicle are stimulated to move up the follicle and to repopulate the epidermis. In the treatment of psoriasis, the mechanism is most often assumed to be DNA photodamage and resulting decrease in cell proliferation but other vascular, leukocyte, or cell regulatory mechanisms may also be playing some role. Psoriasis is a hyperproliferative disorder and other agents known to be therapeutic for psoriasis are known to inhibit DNA synthesis. The most commonly reported side effect of methoxsalen alone is nausea, which occurs with approximately 10% of all patients. This effect may be minimized or avoided by instructing the patient to take methoxsalen with milk or food, or to divide the dose into two portions, taken approximately one-half hour apart. Other effects include nervousness, insomnia, and psychological depression.
Proparacaine is a topical anesthetic drug of the amino ester group. It is available as its hydrochloride salt in ophthalmic solutions at a concentration of 0.5%. Proparacaine hydrochloride ophthalmic solution is indicated for procedures in which a topical ophthalmic anesthetic is indicated: corneal anesthesia of short duration, e.g. tonometry, gonioscopy, removal of corneal foreign bodies, and for short corneal and conjunctival procedures. Proparacaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. More specifically, proparacaine appears to bind or antagonize the function of voltage gated sodium channels. The exact mechanism whereby proparacaine and other local anesthetics influence the permeability of the cell membrane is unknown; however, several studies indicate that local anesthetics may limit sodium ion permeability through the lipid layer of the nerve cell membrane. Proparacaine may alter epithelial sodium channels through interaction with channel protein residues. This limitation prevents the fundamental change necessary for the generation of the action potential.
Hydralazine is a direct-acting vasodilator that is used as an antihypertensive agent. Hydralazine works by relaxing blood vessels (arterioles more than venules) and increasing the supply of blood and oxygen to the heart while reducing its workload. It also functions as an antioxidant. It inhibits membrane-bound enzymes that form reactive oxygen species, such as superoxides. Excessive superoxide counteracts NO-induced vasodilation. Hydralazine is used for the treatment of essential hypertension, alone or as an adjunct. Also for the management of severe hypertension when the drug cannot be given orally or when blood pressure must be lowered immediately, congestive heart failure (in combination with cardiac glycosides and diuretics and/or with isosorbide dinitrate), and hypertension secondary to pre-eclampsia/eclampsia.