{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "LOINC|DISCOURAGED" in comments (approximate match)
Status:
First approved in 1953
Class:
PROTEIN
Status:
US Approved Rx
(2020)
Source:
ANDA212060
(2020)
Source URL:
First approved in 1939
Source:
LIQUAEMIN SODIUM by ASPEN GLOBAL INC
Source URL:
Class:
POLYMER
Нeparin (or Unfractionated heparin ) is an anticoagulant indicated for both the prevention and treatment of thrombotic events such as deep vein thrombosis (DVT) and pulmonary embolism (PE) as well as atrial fibrillation (AF). Heparin can also be used to prevent excess coagulation during procedures such as cardiac surgery, extracorporeal circulation or dialysis, including continuous renal replacement therapy. Heparin administration can be by intravenous (or subcutaneous route. Intravenous heparin is continuously administered for therapeutic anticoagulation, while intermittent subcutaneous administration is used to prevent thromboembolism. Once administered, heparin binds reversibly to antithrombin III (ATIII) and greatly accelerates the rate at which ATIII inactivates coagulation enzymes thrombin (factor IIa) and factor Xa. The heparin-ATIII complex can also inactivate factors IX, XI, XII, and plasmin, but the antithrombotic effect of heparin is well correlated to the inhibition of factor Xa. Typical adverse effects from heparin use include bleeding, thrombocytopenia, injection site reactions, and other adverse effects only seen with chronic heparin administration. Bleeding is a major complication associated with heparin use. Patients should undergo monitoring for new bleeding that may present in the urine or stool. Bleeding may also present as bruising, petechial rash and nosebleeds.
Status:
US Approved Rx
(2013)
First approved in 1942
Class:
STRUCTURALLY DIVERSE
Status:
First approved in 1953
Class:
CONCEPT
Status:
US Approved Rx
(2016)
Source:
NDA208470
(2016)
Source URL:
First approved in 2014
Source:
Prasterone by Health Science Funding, LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dehydroepiandrosterone (INTRAROSA™, prasterone) is a major C19 steroid produced from cholesterol by the adrenal cortex. It is also produced in small quantities in the testis and the ovary. Dehydroepiandrosterone (INTRAROSA, prasterone) is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It indicated for the treatment of moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy, due to menopause. The mechanism of action of dehydroepiandrosterone (INTRAROSA, prasterone) in postmenopausal women with vulvar and vaginal atrophy is not fully established.
Status:
US Approved Rx
(2025)
Source:
NDA219488
(2025)
Source URL:
First approved in 1983
Source:
CHENIX by LEADIANT BIOSCI INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(1984)
Source:
ANDA088366
(1984)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
The ammonium cation is a positively charged polyatomic ion with the chemical formula NH4+. Ammonium ions are a waste product of the metabolism of animals. In fish and aquatic invertebrates, it is excreted directly into the water. In mammals, sharks, and amphibians, it is converted in the urea cycle to urea, because urea is less toxic and can be stored more efficiently. In birds, reptiles, and terrestrial snails, metabolic ammonium is converted into uric acid, which is solid and can therefore be excreted with minimal water loss. Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source. The ammonium ion (NH4+) in the body plays an important role in the maintenance of acid-base balance. The kidney uses ammonium (NH4+) in place of sodium (Na+) to combine with fixed anions in maintaining acid-base balance, especially as a homeostatic compensatory mechanism in metabolic acidosis. When a loss of hydrogen ions (H+) occurs and serum chloride (Cl–) decreases, sodium is made available for combination with bicarbonate (HCO3–). This creates an excess of sodium bicarbonate (NaHCO3) which leads to a rise in blood pH and a state of metabolic alkalosis. The therapeutic effects of Ammonium (as Ammonium Chloride) depend upon the ability of the kidney to utilize ammonia in the excretion of an excess of fixed anions and the conversion of ammonia to urea by the liver, thereby liberating hydrogen (H+) and chloride (Cl–) ions into the extracellular fluid.
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.
Status:
US Approved OTC
Source:
21 CFR 331.11(i)(2) antacid:calcium-containing calcium (mono or dibasic salt)
Source URL:
First marketed in 1921
Source:
Syrup of Calcium Iodide N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Calcium lactate is the salt that consists of two lactate anions for each calcium cation (Ca2+); this salt is used as a calcium supplement to treat hypocalcemia. However, as a source of free calcium, this salt is less convenient than calcium citrate. Calcium lactate inhalation powder also called as PUR118 participated in phase I clinical trials to determine whether this formulation was safe and tolerable in a population of subjects with Cystic Fibrosis (CF). PUR118 also was used in another clinical trials to evaluate its effect on ozone-induced airway Inflammation in healthy normal volunteers in case of Chronic Obstructive Pulmonary Disease (COPD). The obtained results revealed that PUR118 reduced the severity of acute exacerbations in COPD and CF and had the beneficial impacts on mortality, morbidity, and quality of life in affected individuals. However, both studies were discontinued.