U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ABSOLUTE)

Cyclic pyranopterin monophosphate is a precursor to molybdenum cofactor, which is required for the enzyme activity of sulfite oxidase, xanthine dehydrogenase/oxidase, and aldehyde oxidase. The drug is being investigated in severe molybdenum cofactor deficiency type A. In a clinical study, intravenous administration of the drug resulted in greatly improved neurodevelopmental outcome when started sufficiently early.
Brilliant Blue G is triphenylmethane dye that was developed for use in the textile industry but is now commonly used for staining proteins in analytical biochemistry. The Bradford assay is a standard, rapid dye-binding assay that uses Brilliant Blue G to quantify the amount of protein in a solution. Brilliant Blue G also acts as a selective inhibitor of the P2X purinoceptor channel P2X7 (IC50s = 10.1 and 265 nM for rat and human P2X7, respectively). In mice, it inhibits interleukin-1β expression and reduces neurological injury secondary to traumatic brain injury. Brilliant Blue G was used to prepare the protein reagent for the determination of protein content of the collagenase enzyme isolated from fish waste. It may be employed as a stain for the internal limiting membrane (ILM) for the macular hole (MH) and epiretinal membrane (ERM) surgery.
Varenicline is a partial nicotinic acetylcholine receptor agonist, designed to partially activate this system while displacing nicotine at its sites of action in the brain. Varenicline is an alpha-4 beta-2 neuronal nicotinic acetylcholine receptor partial agonist. The drug shows high selectiviyty for this receptor subclass, relative to other nicotinic receptors (>500-fold alpha-3 beta-4, >3500-fold alpha-7, >20,000-fold alpha-1 beta gamma delta) or non-nicotinic receptors and transporters (>2000-fold). The drug competitively inhibits the ability of nicotine to bind to and activate the alpha-4 beta-2 receptor. The drug exerts mild agonistic activity at this site, though at a level much lower than nicotine; it is presumed that this activation eases withdrawal symptoms. Varenicline is sold under the trade name Chantix and Champix, it is indicated for use as an aid to smoking cessation treatment.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Eplerenone, an aldosterone receptor antagonist similar to spironolactone, has been shown to produce sustained increases in plasma renin and serum aldosterone, consistent with inhibition of the negative regulatory feedback of aldosterone on renin secretion. The resulting increased plasma renin activity and aldosterone circulating levels do not overcome the effects of eplerenone. Eplerenone selectively binds to recombinant human mineralocorticoid receptors relative to its binding to recombinant human glucocorticoid, progesterone and androgen receptors. Eplerenone binds to the mineralocorticoid receptor and thereby blocks the binding of aldosterone (component of the renin-angiotensin-aldosterone-system, or RAAS). Aldosterone synthesis, which occurs primarily in the adrenal gland, is modulated by multiple factors, including angiotensin II and non-RAAS mediators such as adrenocorticotropic hormone (ACTH) and potassium. Aldosterone binds to mineralocorticoid receptors in both epithelial (e.g., kidney) and nonepithelial (e.g., heart, blood vessels, and brain) tissues and increases blood pressure through induction of sodium reabsorption and possibly other mechanisms. Used for improvement of survival of stable patients with left ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of congestive heart failure after an acute myocardial infarction.
Candesartan is classified as an angiotensin II receptor type 1 antagonist. Candesartan is an orally active lipophilic drug and possesses rapid oral absorption. It causes a reduction in blood pressure and is used in the treatment of hypertension. It is also used in the treatment of congestive heart failure and given as prophylaxis to reduce the severity and duration of migraine. Candesartan cilexetil, a prodrug of Candesartan, is available in the market under the trade names Atacand, Amias. Candesartan cilexetil is rapidly converted to candesartan, its active metabolite, during absorption from the gastrointestinal tract. Candesartan confers blood pressure lowering effects by antagonizing the hypertensive effects of angiotensin II via the RAAS (renin–angiotensin–aldosterone system). RAAS is a homeostatic mechanism for regulating hemodynamics, water, and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from granular cells of the juxtaglomerular apparatus in the kidneys. Renin cleaves circulating angiotensinogen to angiotensin I, which is cleaved by angiotensin converting enzyme (ACE) to angiotensin II. Angiotensin II increases blood pressure by increasing total peripheral resistance, increasing sodium and water reabsorption in the kidneys via aldosterone secretion, and altering the cardiovascular structure. Angiotensin II binds to two receptors: type-1 angiotensin II receptor (AT1) and type-2 angiotensin II receptor (AT2). Candesartan selectively blocks the binding of angiotensin II to AT1 in many tissues including vascular smooth muscle and the adrenal glands. This inhibits the AT1-mediated vasoconstrictive and aldosterone-secreting effects of angiotensin II and results in an overall decrease in blood pressure. Candesartan is greater than 10,000 times more selective for AT1 than AT2.
Acarbose is an anti-diabetic drug used to treat type 2 diabetes mellitus and, in some countries, prediabetes. Acarbose is an oligosaccharide which is obtained from fermentation processes of a microorganism, Actinoplanes utahensis, and is chemically known as O-4,6-dideoxy¬ 4-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino]¬ α-D-glucopyranosyl-(1 → 4)-O-α-D-glucopyranosyl-(1 → 4)-D-glucose. Acarbose is a complex oligosaccharide that delays the digestion of ingested carbohydrates, thereby resulting in a smaller rise in blood glucose concentration following meals. As a consequence of plasma glucose reduction, PRECOSE (acarbose tablets) reduces levels of glycosylated hemoglobin in patients with type 2 diabetes mellitus. Systemic non-enzymatic protein glycosylation, as reflected by levels of glycosylated hemoglobin, is a function of average blood glucose concentration over time. In contrast to sulfonylureas, PRECOSE does not enhance insulin secretion. The antihyperglycemic action of acarbose results from a competitive, reversible inhibition of pancreatic alpha-amylase and membrane-bound intestinal alpha-glucoside hydrolase enzymes. Pancreatic alpha-amylase hydrolyzes complex starches to oligosaccharides in the lumen of the small intestine, while the membrane-bound intestinal alpha-glucosidases hydrolyze oligosaccharides, trisaccharides, and disaccharides to glucose and other monosaccharides in the brush border of the small intestine. In diabetic patients, this enzyme inhibition results in a delayed glucose absorption and a lowering of postprandial hyperglycemia. Because its mechanism of action is different, the effect of PRECOSE to enhance glycemic control is additive to that of sulfonylureas, insulin or metformin when used in combination. In addition, PRECOSE diminishes the insulinotropic and weight-increasing effects of sulfonylureas. Acarbose has no inhibitory activity against lactase and consequently would not be expected to induce lactose intolerance.
Status:
First approved in 1987

Class (Stereo):
CHEMICAL (ABSOLUTE)



Mometasone is a medium-potency synthetic corticosteroid with antiinflammatory, antipruritic, and vasoconstrictive properties. Studies in asthmatic patients have demonstrated that mometasone provides a favorable ratio of topical to systemic activity due to its primary local effect along with the extensive hepatic metabolism and the lack of active metabolites. Though effective for the treatment of asthma, glucocorticoids do not affect asthma symptoms immediately. Maximum improvement in symptoms following inhaled administration of mometasone furoate may not be achieved for 1 to 2 weeks or longer after starting treatment. When glucocorticoids are discontinued, asthma stability may persist for several days or longer. Mometasone has been shown in vitro to exhibit a binding affinity for the human glucocorticoid receptor which is approximately 12 times that of dexamethasone, 7 times that of triamcinolone acetonide, 5 times that of budesonide, and 1.5 times that of fluticasone. Mometasone inhaler is indicated for the maintenance treatment of asthma as prophylactic therapy. The nasal spray is indicated for the treatment of the nasal symptoms of seasonal allergic and perennial allergic rhinitis. ELOCON Lotion (Mometasone) is indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses.
Fluoxetine hydrochloride is the first agent of the class of antidepressants known as selective serotonin-reuptake inhibitors (SSRIs). Fluoxetine is a racemic mixture of the R- and S- enantiomers and are of equivalent pharmacologic activity. Despite distinct structural differences between compounds in this class, SSRIs possess similar pharmacological activity. As with other antidepressant agents, several weeks of therapy may be required before a clinical effect is seen. SSRIs are potent inhibitors of neuronal serotonin reuptake. They have little to no effect on norepinephrine or dopamine reuptake and do not antagonize α- or β-adrenergic, dopamine D2 or histamine H1 receptors. During acute use, SSRIs block serotonin reuptake and increase serotonin stimulation of somatodendritic 5-HT1A and terminal autoreceptors. Fluoxetine is marketed under the trade names Prozac and Sarafem among others. It is also marketed for the treatment of premenstrual dysphoric disorder (Sarafem®, fluoxetine hydrochloride). PROZAC is a selective serotonin reuptake inhibitor indicated for: • Acute and maintenance treatment of Major Depressive Disorder (MDD) in adult and pediatric patients aged 8 to 18 years • Acute and maintenance treatment of Obsessive Compulsive Disorder (OCD) in adult and pediatric patients aged 7 to 17 years • Acute and maintenance treatment of Bulimia Nervosa in adult patients • Acute treatment of Panic Disorder, with or without agoraphobia, in adult patients. Studies at clinically relevant doses in man have demonstrated that fluoxetine blocks the uptake of serotonin into human platelets. Studies in animals also suggest that fluoxetine is a much more potent uptake inhibitor of serotonin than of norepinephrine. Antagonism of muscarinic, histaminergic, and α1-adrenergic receptors has been hypothesized to be associated with various anticholinergic, sedative, and cardiovascular effects of classical tricyclic antidepressant (TCA) drugs. Fluoxetine binds to these and other membrane receptors from brain tissue much less potently in vitro than do the tricyclic drugs.
Status:
First approved in 1985

Class (Stereo):
CHEMICAL (ABSOLUTE)



CLOBETASOL, a derivative of prednisolone with high glucocorticoid activity and low mineralocorticoid activity. Absorbed through the skin faster than fluocinonide, it is used topically in the treatment of psoriasis but may cause marked adrenocortical suppression. For short-term topical treatment of the inflammatory and pruritic manifestations of moderate to severe corticosteroid-responsive dermatoses of the scalp. Like other topical corticosteroids, clobetasol has anti-inflammatory, antipruritic, and vasoconstrictive properties. It is a very high potency topical corticosteroid that should not be used with occlusive dressings. Topical corticosteroids share anti-inflammatory, antipruritic, and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of topical steroids is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Initially, however, clobetasol, like other corticosteroids, bind to the glucocorticoid receptor, which complexes, enters the cell nucleus and modifies genetic transcription (transrepression/transactivation).
Dinoprostone is a naturally occurring prostaglandin E2 (PGE2). Dinoprostone is equivalent to prostaglandin E2 (PGE2). It stimulates labor and delivery by stimulating the uterine, and thus terminates pregnancy. Dinoprostone is also capable of stimulating the smooth muscle of the gastrointestinal tract of man. This activity may be responsible for the vomiting and/or diarrhea that is not uncommon when dinoprostone is used to terminate pregnancy. Dinoprostone administered intravaginally stimulates the myometrium of the gravid uterus to contract in a manner that is similar to the contractions seen in the term uterus during labor, resulting in the evacuation of the products of conception from the uterus. It is believed that dinoprostone exerts its uterine effects via direct myometrial stimulation. It is used for the termination of pregnancy during the second trimester (from the 12th through the 20th gestational week as calculated from the first day of the last normal menstrual period), as well as for evacuation of the uterine contents in the management of missed abortion or intrauterine fetal death up to 28 weeks of gestational age as calculated from the first day of the last normal menstrual period. Also used in the management of nonmetastatic gestational trophoblastic disease (benign hydatidiform mole). Other indications include improving the cervical inducibility (cervical "ripening") in pregnant women at or near term with a medical or obstetrical need for labor induction, and the management of postpartum hemorrhage.