{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2022)
Source:
ANDA210859
(2022)
Source URL:
First approved in 2002
Source:
NDA021445
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ezetimibe is an anti-hyperlipidemic medication which is used to lower cholesterol levels. Specifically, it appears to bind to a critical mediator of cholesterol absorption, the Niemann-Pick C1-Like 1 (NPC1L1) protein on the gastrointestinal tract epithelial cells as well as in hepatocytes. Ezetimibe is in a class of lipid-lowering compounds that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. Ezetimibe, administered alone is indicated as adjunctive therapy to diet for the reduction of elevated total-C, LDL-C, and Apo B in patients with primary (heterozygous familial and non-familial) hypercholesterolemia. It is also used in combination therapy with HMG-CoA reductase inhibitors. Ezetimibe has a mechanism of action that differs from those of other classes of cholesterol-reducing compounds (HMG-CoA reductase inhibitors, bile acid sequestrants, fibric acid derivatives, and plant stanols). Ezetimibe does not inhibit cholesterol synthesis in the liver, or increase bile acid excretion but instead localizes and appears to act at the brush border of the small intestine and inhibits the absorption of cholesterol, leading to a decrease in the delivery of intestinal cholesterol to the liver. This causes a reduction of hepatic cholesterol stores and an increase in clearance of cholesterol from the blood; this distinct mechanism is complementary to that of HMG-CoA reductase inhibitors.
Status:
US Approved Rx
(2022)
Source:
ANDA214682
(2022)
Source URL:
First approved in 2002
Source:
NDA021344
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Fulvestrant is a drug treatment of hormone receptor-positive metastatic breast cancer in post-menopausal women with disease progression following anti-estrogen therapy. It is an estrogen receptor antagonist with no agonist effects, which works both by down-regulating and by degrading the estrogen receptor. Fulvestrant competitively and reversibly binds to estrogen receptors present in cancer cells and achieves its anti-estrogen effects through two separate mechanisms. First, fulvestrant binds to the receptors and downregulates them so that estrogen is no longer able to bind to these receptors. Second, fulvestrant degrades the estrogen receptors to which it is bound. Both of these mechanisms inhibit the growth of tamoxifen-resistant as well as estrogen-sensitive human breast cancer cell lines. Fulvestrant is used for the treatment of hormone receptor positive metastatic breast cancer in postmenopausal women with disease progression following anti-estrogen therapy. Fulvestrant is marketed under the trade name Faslodex, by AstraZeneca.
Status:
US Approved Rx
(2025)
Source:
ANDA218406
(2025)
Source URL:
First approved in 1998
Source:
NDA020850
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It was discovered by Boehringer Ingelheim and launched in 1999 as Micardis. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II. Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators. Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Telmisartan is used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Status:
US Approved Rx
(2020)
Source:
ANDA212786
(2020)
Source URL:
First approved in 1998
Source:
SUSTIVA by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Efavirenz (brand names Sustiva® and Stocrin®) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and is used as part of highly active antiretroviral therapy (HAART) for the treatment of a human immunodeficiency virus (HIV) type 1. For HIV infection that has not previously been treated, efavirenz and lamivudine in combination with zidovudine or tenofovir is the preferred NNRTI-based regimen. Efavirenz is also used in combination with other antiretroviral agents as part of an expanded postexposure prophylaxis regimen to prevent HIV transmission for those exposed to materials associated with a high risk for HIV transmission.
Status:
US Approved Rx
(2007)
Source:
NDA022042
(2007)
Source URL:
First approved in 1997
Source:
NDA020815
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Raloxifene (marketed as Evista by Eli Lilly and Company) is an oral selective estrogen receptor modulator (SERM) that has estrogenic actions on bone and anti-estrogenic actions on the uterus and breast. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibition of their proliferative capacity. This inhibition is thought to contribute to the drug's effect on bone resorption. Other mechanisms include the suppression of the activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechanism of action of raloxifene has not been fully determined, but evidence suggests that the drug's tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. Raloxifene is indicated for the treatment and prevention of osteoporosis in postmenopausal women. It is also used for reduction of risk and treatment of invasive breast cancer, and it also reduces breast density. For either osteoporosis treatment or prevention, supplemental calcium and/or vitamin D should be added to the diet if daily intake is inadequate. Common adverse events considered to be drug-related were hot flashes and leg cramps.
Status:
US Approved Rx
(2012)
Source:
ANDA202200
(2012)
Source URL:
First approved in 1996
Source:
LEVAQUIN by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Levofloxacin is the L-isomer of the racemate, ofloxacin, a quinolone antimicrobial agent. Levofloxacin is used for oral and intravenous administration. Levofloxacin is sold under brand name levaquin and is used to treat infections in adults (≥18 years of age) caused by designated, susceptible bacteria such as, pneumonia: nosocomial and community acquired; skin and skin structure infections: complicated and uncomplicated; chronic bacterial prostatitis; inhalational anthrax. In addition this drug is used to treat plague; urinary tract infections: complicated and uncomplicated; acute pyelonephritis; acute bacterial exacerbation of chronic bronchitis and acute bacterial sinusitis. Levofloxacin, like other fluoroquinolones, inhibits the bacterial DNA gyrase, halting DNA replication. This results in strand breakage on a bacterial chromosome, supercoiling, and resealing. In addition, levofloxacin inhibits a bacterial type II topoisomerase.
Status:
US Approved Rx
(2022)
Source:
ANDA212955
(2022)
Source URL:
First approved in 1995
Source:
REVEX by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Nalmefene is the first medication approved for alcoholism
with the primary goal of reducing alcohol intake in an as
needed approach. Nalmefene
received a marketing authorization valid throughout the
European Union on February 25, 2013 and is under development
in Asia. Nalmefene is an opioid system modulator with a
distinct μ, δ, and κ receptor profile. In vitro studies have demonstrated
that Nalmefene is a selective opioid receptor ligand
with antagonist activity at the μ and δ receptors and partial
agonist activity at the κ receptor. In vivo studies have demonstrated
that nalmefene reduces alcohol consumption, possibly
by modulating cortico-mesolimbic functions. In the US, immediate-release injectable nalmefene was approved in 1995 as an antidote for opioid overdose. It was sold under the trade name Revex. The product was discontinued by its manufacturer around 2008. Currently Nalmefene is sold under the trade name Selincro. Selincro is indicated for the reduction of alcohol consumption in adult patients with alcohol dependence who have a high drinking-risk level, without physical withdrawal symptoms and who do not require immediate detoxification.
Status:
US Approved Rx
(2002)
Source:
NDA021425
(2002)
Source URL:
First approved in 1995
Source:
NDA020220
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Iopromide is a molecule used as a contrast medium. It is a low osmolar, non-ionic contrast agent for intravascular use. It is commonly used in radiographic studies such as intravenous urograms, brain computer tomography (CT) and CT pulmonary angiograms (CTPAs). It appears to increase the risk of biguanide induced lactic acidosis. Interleukins are associated with an increased prevalence of delayed hypersensitivity reactions after iodinated contrast agent administration. Most common adverse reactions (>1%) are headache, nausea, injection site and infusion site reactions, vasodilatation, vomiting, back pain, urinary urgency, chest pain, pain, dysgeusia, and abnormal vision.
Status:
US Approved Rx
(2010)
Source:
ANDA091629
(2010)
Source URL:
First approved in 1995
Source:
NDA020386
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Status:
US Approved Rx
(2009)
Source:
ANDA079089
(2009)
Source URL:
First approved in 1995
Source:
NDA020498
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Bicalutamide (brand name Casodex) is an oral non-steroidal anti-androgen for prostate cancer. It is indicated for use in combination therapy with a luteinizing hormone-releasing hormone (LHRH) analog for the treatment of Stage D2 metastatic carcinoma of the prostate. Bicalutamide competitively inhibits the action of androgens by binding to cytosol androgen receptors in the target tissue. Prostatic carcinoma is known to be androgen sensitive and responds to treatment that counteracts the effect of androgen and/or removes the source of androgen. When CASODEX is combined with luteinizing hormone releasing hormone (LHRH) analog therapy, the suppression of serum testosterone induced by the LHRH analog is not affected. Bicalutamide is well-absorbed following oral administration, although the absolute bioavailability is unknown. Bicalutamide undergoes stereospecific metabolism. The S (inactive) isomer is metabolized primarily by glucuronidation. The R (active) isomer also undergoes glucuronidation but is predominantly oxidized to an inactive metabolite followed by glucuronidation. Both the parent and metabolite glucuronides are eliminated in the urine and feces. The S-enantiomer is rapidly cleared relative to the R-enantiomer, with the R-enantiomer accounting for about 99% of total steady-state plasma levels.