{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2018)
Source:
NDA210910
(2018)
Source URL:
First approved in 2018
Source:
NDA210910
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Rifamycin SV is a derivative of antibiotic rifamycin B (the natural fermentation product of S. mediterranei broths). The primary target of rifampicin on whole bacteria is the synthesis of RNA. Rifamycin belongs to the ansamycin class of antibacterial drugs and acts by inhibiting the beta subunit of the bacterial DNA-dependent RNA polymerase, blocking one of the steps in DNA transcription. This results in inhibition of bacterial synthesis and consequently growth of bacteria. Rifampicin exhibits bactericidal activity on Gram-positive and Gram-negative bacteria and on mycobacteria. Rifamycin SV MMX® (AEMCOLO), a non-absorbable rifamycin antibiotic formulated using the multi-matrix system, was designed to exhibit its pharmacological action on the distal small intestine and colon. AEMCOLO is indicated for the treatment of travelers’ diarrhea (TD) caused by non-invasive strains of Escherichia coli in adults.
Status:
US Approved Rx
(2017)
Source:
NDA209606
(2017)
Source URL:
First approved in 2017
Source:
NDA209606
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Enasidenib, aslo known as AG-221 and CC-90007, is a potent and selective IDH2 inhibitor with potential anticancer activity (IDH2 = Isocitrate dehydrogenase 2). The mutations of IDH2 present in certain cancer cells result in a new ability of the enzyme to catalyze the NAPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). The production of 2HG is believed to contribute to the formation and progression of cancer. The inhibition of mutant IDH2 and its neoactivity is therefore a potential therapeutic treatment for cancer. Enasidenib is an orally available, selective, potent inhibitor of the mutated IDH2 protein, making it a highly targeted investigational medicine for the potential treatment of patients with cancers that harbor an IDH2 mutation. Enasidenib has received orphan drug and fast track designations from the U.S. FDA. Enasidenib mesylate is in phase II clinical trials for Solid tumours and phase III clinical trials for the treatment of acute myeloid leukaemia.
Status:
US Approved Rx
(2017)
Source:
NDA209935
(2017)
Source URL:
First approved in 2017
Source:
NDA209935
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ribociclib, also known as LEE011, is an orally available cyclin-dependent kinase (CDK) inhibitor targeting cyclin D1/CDK4 and cyclin D3/CDK6 cell cycle pathway, with potential antineoplastic activity. CDK4/6 inhibitor LEE011 specifically inhibits CDK4 and 6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Inhibition of Rb phosphorylation prevents CDK-mediated G1-S phase transition, thereby arresting the cell cycle in the G1 phase, suppressing DNA synthesis and inhibiting cancer cell growth. Overexpression of CDK4/6, as seen in certain types of cancer, causes cell cycle deregulation. Ribociclib is in phase III clinical trials by Novartis for the treatment of postmenopausal women with advanced breast cancer. Phase II clinical trials are also in development for the treatment of liposarcoma, ovarian cancer, fallopian tube cancer, peritoneum cancer, endometrial cancer, and gastrointestinal cancer. Preregistration for Breast cancer (First-line therapy, Combination therapy, Late-stage disease) in the USA (PO) in November 2016.
Status:
US Approved Rx
(2017)
Source:
NDA209885
(2017)
Source URL:
First approved in 2017
Source:
NDA209885
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Deutetrabenazine (trade name Austedo) is a vesicular monoamine transporter 2 (VMAT2) inhibitor indicated for the treatment of chorea associated with Huntington’s disease. The drug was developed by Auspex Pharmaceuticals and is being commercialized by Teva Pharmaceuticals. Deutetrabenazine is a deuterated derivative of tetrabenazine. The incorporation of deuterium in place of hydrogen at the sites of primary metabolism results in metabolic clearance being slowed, allowing less frequent dosing and better tolerability.
Status:
US Approved Rx
(2017)
Source:
NDA208854
(2017)
Source URL:
First approved in 2017
Source:
NDA208854
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Naldemedine (Symproic) is an opioid antagonist indicated for the treatment of opioid-induced
constipation (OIC) in adult patients with chronic non-cancer
pain. Naldemedine is an opioid antagonist with binding affinities for mu-, delta-, and kappa-opioid receptors.
Naldemedine functions as a peripherally-acting mu-opioid receptor antagonist in tissues such as the
gastrointestinal tract, thereby decreasing the constipating effects of opioids. Naldemedine is a derivative of naltrexone to which a side chain has been added that increases the molecular
weight and the polar surface area, thereby reducing its ability to cross the blood-brain barrier (BBB).
Naldemedine is also a substrate of the P-glycoprotein (P-gp) efflux transporter. Based on these properties, the
CNS penetration of naldemedine is expected to be negligible at the recommended dose levels, limiting the
potential for interference with centrally-mediated opioid analgesia. Naldemedine was approved in 2017 in both the US and Japan for the treatment of Opioid-induced Constipation.
Status:
US Approved Rx
(2017)
Source:
NDA209806
(2017)
Source URL:
First approved in 2017
Source:
NDA209806
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Ertugliflozin (PF-04971729) is a potent and selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. SGLT2 has become an important therapeutic target and several SGLT2-selective inhibitors are either approved or in clinical development for the management of blood glucose in patients with type 2 diabetes. Ertugliflozin demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It was announced that FDA and EMA filing acceptances of three marketing applications for ertugliflozin-containing medicines for adults with type 2 diabetes.
Status:
US Approved Rx
(2017)
Source:
NDA209363
(2017)
Source URL:
First approved in 2017
Source:
NDA209363
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Secnidazole (trade names Flagentyl, Sindose, Solosec) is a nitroimidazole derivative used to in the treatment of amoebiasis and bacterial vaginosis. Secnidazole and other 5-nitroimidazole drugs enter micro-organisms by passive diffusion and undergo activation by reduction of the 5-nitro group. In anaerobic micro-organisms, such as Trichomonas, Giardia and Entamoeba spp., this intracellular reduction occurs via the pyruvate ferredoxin oxidoreductase complex and results in a concentration gradient across the cell membrane which, in tum, enhances transport of the parent drug into the cell. Because the electron affinity of the 5-nitroimidazoles is greater than that of reduced ferredoxin, the drug interrupts the normal electron flow. Aerobic micro-organisms have a more positive redox potential (i.e. are more efficient electron acceptors) than secnidazole and other 5-nitroimidazoles, which explains the selective toxicity of these drugs against anaerobic microorganisms. DNA is the intracellular target of the Secnidazole and other 5-nitroimidazoles. Secnidazole and other 5-nitroimidazoles possess selective activity against many anaerobic Gram-positive and Gram-negative bacteria and protozoa. In general, secnidazole and metronidazole were approximately equipotent in activity against Bacteroides fragilis, Trichomonas vaginalis, and Entamoeba histolytica, in in vitro studies. Secnidazole is rapidly and completely absorbed after oral administration. Plasma drug concentrations are linear over the therapeutic dose range of 0.5 to 2g. The tolerability profile of secnidazole does not differ markedly from other 5-nitroimidazoles. The most commonly reported adverse events in clinical trials involved the gastrointestinal tract (nausea, vomiting, glossitis, anorexia, epigastric pain and a metallic taste) and occurred in 2 to 10% of patients. A headache and dizziness were experienced by about 2% of patients. The drug was equally well tolerated in adults and children, and no adverse event required therapeutic intervention or treatment withdrawal.
Status:
US Approved Rx
(2016)
Source:
NDA209115
(2016)
Source URL:
First approved in 2016
Source:
NDA209115
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Rucaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for the treatment of advanced mutant BRCA ovarian cancer. Rucaparib is being investigated in clinical trials against prostate cancer, breast cancer and other neoplasms.
Status:
US Approved Rx
(2016)
Source:
NDA207695
(2016)
Source URL:
First approved in 2016
Source:
NDA207695
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Crisaborole is a topically administered, boron-containing, anti-inflammatory compound that inhibits the phosphodiesterase-4 (PDE4) activity and thereby suppresses the cytokine release of TNFalpha, IL-12, IL-23 and other cytokines. PDE4 is an an enzyme that converts the intracellular second messenger 3'5'-cyclic adenosine monophosphate (cAMP) into the active metabolite adenosine monophosphate (AMP). By inhibiting PDE4 and thus increasing levels of cAMP, crisaborole controls inflammation. The use of boron chemistry enabled synthesis of a low-molecular-weight compound (251 daltons), thereby facilitating effective penetration of crisaborole through human skin. Crisaborole is in clinical development for the topical treatment of psoriasis and being pursued for the topical treatment of atopic dermatitis. Preliminary studies in children and adults demonstrated favorable efficacy and safety profiles. Crisaborole may represent an anti-inflammatory option that safely minimizes the symptoms and severity of AD and that can be used for both acute and long-term management.
Status:
US Approved Rx
(2015)
Source:
NDA206192
(2015)
Source URL:
First approved in 2015
Source:
NDA206192
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cobimetinib is an orally active, potent and highly selective small molecule inhibiting mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK signal transduction pathway. It has been approved in Switzerland and the US, in combination with vemurafenib for the treatment of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma. Preclinical studies have demonstrated that Cobimetinib is effective in inhibiting the growth of tumor cells bearing a BRAF mutation, which has been found to be associated with many tumor types. A threonine-tyrosine kinase and a key component of the RAS/RAF/MEK/ERK signalling pathway that is frequently activated in human tumors, MEK1 is required for the transmission of growth-promoting signals from numerous receptor tyrosine kinases. Cobimetinib is used in combination with vemurafenib because the clinical benefit of a BRAF inhibitor is limited by intrinsic and acquired resistance. Reactivation of the MAPK pathway is a major contributor to treatment failure in BRAF-mutant melanomas, approximately ~80% of melanoma tumors becomes BRAF-inhibitor resistant due to reactivation of MAPK signalling. BRAF-inhibitor resistant tumor cells are sensitive to MEK inhibition, therefore cobimetinib and vemurafenib will result in dual inhibition of BRAF and its downstream target, MEK. Cobimetinib specifically binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of extracellular signal-related kinase 2 (ERK2) phosphorylation and activation and decreased tumor cell proliferation. Cobimetinib and vemurafenib target two different kinases in the RAS/RAF/MEK/ERK pathway. Cobimetinib is used for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation. Cobimetinib is used in combination with vemurafenib, a BRAF inhibitor. Cobimetinib is marketed under the trade name Cotellic.