{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2011)
Source:
ANDA090870
(2011)
Source URL:
First approved in 2003
Source:
ELESTAT by ALLERGAN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Epinastine (brand names Alesion, Elestat, Purivist, Relestat) is a second-generation antihistamine and mast cell stabilizer. Epinastine is a topically active, direct H1-receptor antagonist and an inhibitor of the release of
histamine from the mast cell. Epinastine is selective for the histamine H1-receptor and has affinity for
the histamine H2 receptor. Epinastine also possesses affinity for the α1-, α2-, and 5-HT2 –receptors.
Epinastine does not penetrate the blood/brain barrier and, therefore, is not expected to induce side effects of the central nervous system. Elestat ophthalmic solution is indicated for the prevention of itching associated with
allergic conjunctivitis.
Status:
US Approved Rx
(2020)
Source:
ANDA210319
(2020)
Source URL:
First approved in 2003
Source:
NDA021487
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
NAMENDA (marketed under the brands Namenda among others) is an N-methyl-D-aspartate (NMDA) receptor antagonist indicated for the treatment of moderate to severe dementia of the Alzheimer’s type. Persistent activation of central nervous system N-methyl-D-aspartate (NMDA) receptors by the excitatory amino acid glutamate has been hypothesized to contribute to the symptomatology of Alzheimer’s disease. Memantine is postulated to exert its therapeutic effect through its action as a low to moderate affinity uncompetitive (open-channel) NMDA receptor antagonist which binds preferentially to the NMDA receptor-operated cation channels. There is no evidence that memantine prevents or slows neurodegeneration in patients with Alzheimer’s disease. Memantine showed low to negligible affinity for GABA, benzodiazepine, dopamine, adrenergic, histamine and glycine receptors and for voltage-dependent Ca2+, Na+ or K+ channels. Memantine also showed antagonistic effects at the 5HT3 receptor with a potency similar to that for the NMDA receptor and blocked nicotinic acetylcholine receptors with one-sixth to one-tenth the potency. In vitro studies have shown that memantine does not affect the reversible inhibition of acetylcholinesterase by donepezil, galantamine, or tacrine.
Status:
US Approved Rx
(2023)
Source:
ANDA079188
(2023)
Source URL:
First approved in 2003
Source:
NDA021500
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Emtricitabine was discovered by Emory researchers Dr. Dennis C. Liotta, Dr. Raymond F. Schinazi and Dr. Woo-Baeg Choi and licensed to Triangle Pharmaceuticals by Emory University in 1996. Triangle was acquired by Gilead in 2003. Emtricitabine, marketed by Gilead as Emtriva, was first approved by the U.S. Food and Drug Administration in July 2003 for the treatment of HIV infection in combination with other antiretroviral agents. Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 reverse transcriptase by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination.
Status:
US Approved Rx
(2022)
Source:
ANDA209659
(2022)
Source URL:
First approved in 2003
Source:
NDA021602
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Bortezomib is the therapeutic proteasome inhibitor. First, which is tested in humans. The boron atom in bortezomib binds the catalytic site of the 26S proteasome with high affinity and specificity. Bortezomib is approved in the U.S. for treating relapsed multiple myeloma and mantle cell lymphoma. The 26S proteasome degrades various proteins critical to cancer cell survival, such as cyclins, tumor suppressors, BCL-2, and cyclin-dependent kinase inhibitors. Inhibition of these degradations sensitizes cells to apoptosis. Bortezomib is a potent inhibitor of 26S proteasome, which sensitizes activity in dividing multiple myeloma and leukemic cells, thus inducing apoptosis. Most commonly reported adverse reactions (incidence ≥30%) in clinical studies include asthenic conditions, diarrhea, nausea, constipation, peripheral neuropathy, vomiting, pyrexia, thrombocytopenia, psychiatric disorders, anorexia and decreased appetite, neutropenia, neuralgia, leukopenia and anemia. Co-administration of ketoconazole, a potent CYP3A inhibitor, increased the exposure of bortezomib. Co-administration of melphalan-prednisone increased the exposure of bortezomib. However, this increase is unlikely to be clinically relevant.
Status:
US Approved Rx
(2019)
Source:
ANDA206285
(2019)
Source URL:
First approved in 2003
Source:
NDA021368
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Tadalafil is used to treat male erectile dysfunction (impotence) and pulmonary arterial hypertension (PAH). Part of the physiological process of erection involves the release of nitric oxide (NO) in the corpus cavernosum. This then activates the enzyme guanylate cyclase which results in increased levels of cyclic guanosine monophosphate (cGMP), leading to smooth muscle relaxation in the corpus cavernosum, resulting in increased inflow of blood and an erection. Tadalafil is a potent and selective inhibitor of cGMP specific phosphodiesterase type 5 (PDE5) which is responsible for degradation of cGMP in the corpus cavernosum. This means that, with tadalafil on board, normal sexual stimulation leads to increased levels of cGMP in the corpus cavernosum which leads to better erections. Without sexual stimulation and no activation of the NO/cGMP system, tadalafil should not cause an erection.Tadalafil inhibits the cGMP specific phosphodiesterase type 5 (PDE5) which is responsible for degradation of cGMP in the corpus cavernosum located around the penis. Penile erection during sexual stimulation is caused by increased penile blood flow resulting from the relaxation of penile arteries and corpus cavernosal smooth muscle. This response is mediated by the release of nitric oxide (NO) from nerve terminals and endothelial cells, which stimulates the synthesis of cGMP in smooth muscle cells. Cyclic GMP causes smooth muscle relaxation and increased blood flow into the corpus cavernosum. The inhibition of phosphodiesterase type 5 (PDE5) by tadalafil enhances erectile function by increasing the amount of cGMP. Tadalafil is used for the treatment of erectile dysfunction.
Status:
US Approved Rx
(2016)
Source:
ANDA079169
(2016)
Source URL:
First approved in 2003
Source:
NDA021366
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CRESTOR (rosuvastatin calcium) is an inhibitor of HMG-CoA reductase. It has been widely launched for the treatment of patients with dyslipidaemia and has also been approved in the US and EU to slow the progression of atherosclerosis.
Status:
US Approved Rx
(2012)
Source:
ANDA091347
(2012)
Source URL:
First approved in 2003
Source:
NDA021400
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Vardenafil (Levitra) is an oral therapy for the treatment of erectile dysfunction. It is a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5). Penile erection is a hemodynamic process initiated by the relaxation of smooth muscle in the corpus cavernosum and its associated arterioles. During sexual stimulation, nitric oxide is released from nerve endings and endothelial cells in the corpus cavernosum. Nitric oxide activates the enzyme guanylate cyclase resulting in increased synthesis of cyclic guanosine monophosphate (cGMP) in the smooth muscle cells of the corpus cavernosum. The cGMP in turn triggers smooth muscle relaxation, allowing increased blood flow into the penis, resulting in erection. The tissue concentration of cGMP is regulated by both the rates of synthesis and degradation via phosphodiesterases (PDEs). The most abundant PDE in the human corpus cavernosum is the cGMPspecific phosphodiesterase type 5 (PDE5); therefore, the inhibition of PDE5 enhances erectile function by increasing the amount of cGMP.
Status:
US Approved Rx
(2022)
Source:
ANDA209532
(2022)
Source URL:
First approved in 2003
Source:
IRESSA by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Gefitinib is an anilinoquinazoline with antineoplastic activity. Gefitinib inhibits the epidermal growth factor receptor (EGFR) tyrosine kinase by binding to the adenosine triphosphate (ATP)-binding site of the enzyme. Thus the function of the EGFR tyrosine kinase in activating the Ras signal transduction cascade is inhibited; and malignant cells are inhibited. Gefitinib is the first selective inhibitor of the EGFR tyrosine kinase which is also referred to as Her1 or ErbB-1. EGFR is overexpressed in the cells of certain types of human carcinomas - for example in lung and breast cancers. Overexpression leads to inappropriate activation of the apoptotic Ras signal transduction cascade, eventually leading to uncontrolled cell proliferation. Gefitinib is used for the continued treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of either platinum-based or docetaxel chemotherapies.
Status:
US Approved Rx
(2008)
Source:
NDA022023
(2008)
Source URL:
First approved in 2003
Source:
NDA021549
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fosaprepitant (Emend for Injection (US), Ivemend (EU)) is a prodrug of Aprepitant. Once biologically activated, the drug acts as a substance P/neurokinin 1 (NK1) receptor antagonist which, in combination with other antiemetic agents, is indicated for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy. Aprepitant is a selective high-affinity antagonist of human substance P/neurokinin 1 (NK1) receptors. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting (CI NV). Aprepitant has been shown in animal models to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with Aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors. Animal and human studies show that Aprepitant augments the antiemetic activity of the 5-HT3-receptor antagonist ondansetron and the corticosteroid ethasone and inhibits both the acute and delayed phases of cisplatin induced emesis. In summary, the active form of fosaprepitant is as an NK1 antagonist which is because it blocks signals given off by NK1 receptors. This therefore decreases the likelihood of vomiting in patients experiencing. Fosaprepitant is used for the prevention of nausea and vomiting associated with highly emetogenic cancer chemotherapy.
Status:
US Approved Rx
(2003)
Source:
NDA021348
(2003)
Source URL:
First approved in 2003
Source:
NDA021348
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Miglustat, an N-alkylated imino sugar, is a synthetic analogue of D-glucose. Miglustat is an inhibitor of the enzyme glucosylceramide synthase, which is a glucosyl transferase enzyme responsible for catalyzing the formation of glucosylceramide (glucocerebroside). Glucosylceramide is a substrate for the endogenous glucocerebrosidase, an enzyme that is deficient in Gaucher's disease. The accumulation of glucosylceramide due to the absence of glucocerebrosidase results in the storage of this material in the lysosomes of tissue macrophages, leading to widespread pathology due to infiltration of lipid-engorged macrophages in the viscera, lymph nodes, and bone marrow. This results in secondary hematologic consequences including sever anemia and thrombocytopenia, in addition to the characteristic progressive hepatosplenomegaly, as well as skeletal complications including osteonecrosis and osteopenia with secondary pathological fractures. Miglustat functions as a competitive and reversible inhibitor of the enzyme glucosylceramide synthase, the initial enzyme in a series of reactions which results in the synthesis of most glycosphingolipids. The goal of treatment with miglustat is to reduce the rate of glycosphingolipid biosynthesis so that the amount of glycosphingolipid substrate is reduced to a level which allows the residual activity of the deficient glucocerebrosidase enzyme to be more effective (substrate reduction therapy), reducing the accumulation of glucocerebroside in macrophages. In vitro and in vivo studies have shown that miglustat can reduce the synthesis of glucosylceramide-based glycosphingolipids. In clinical trials, miglustat improved liver and spleen volume, as well as hemoglobin concentration and platelet count. Inhibition of glycosphingolipid synthesis has also shown to reduce intracellular lipid storage, improve fluid-phase endosomal uptake and normalize lipid transport in peripheral blood B lymphocytes of NP-C patients, which results in a decrease in the potentially neurotoxic accumulation of gnagliosides GM2 and GM3, lactosylceramide and glucosylceramide, possibly preventing further neuronal damage. Other studies have also suggested that miglustat may indirectly modulate intracellular calcium homeostasis through its effects on glucosylceramide levels, and evidence has shown that an initiating factor in the pathogenesis of NP-C may be impaired calcium homeostasis related to sphingosine storage. Therefore, the effect that miglustat exerts on intracellular calcium levels may influence an important underlying pathogenic mechanism of NP-C. Miglustat is used for the treatment of adult patients with mild to moderate type 1 (nonneuropathic) Gaucher's disease for whom enzyme replacement therapy is not a therapeutic option (e.g. due to constraints such as allergy, hypersensitivity, or poor venous access). Now approved in some countries for the treatment of progressive neurological symptoms in adult and pediatric patients with Niemann-Pick disease type C (NP-C). Miglustat is marketed under the trade name Zavesca.