{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
First approved in 2018
Source:
NADA141342
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Alfaxalone is a rapidly acting hydrophobic synthetic neurosteroid. It is indicated for the induction and maintenance of anesthesia and for induction of anesthesia followed by maintenance with an inhalant anesthetic, in cats and dogs. Alfaxalone induces anaesthesia through activity at the gamma amino butyric acid sub-type A receptor (GABAA) present on cells in the Central Nervous System (CNS). Alfaxalone enhances the effects of GABA at the GABAA receptors resulting in opening of channels into the cells and an influx of chloride ions. This causes hyperpolarisation of the cells and inhibition of neural impulse transmission. Alfaxalone can be safely combined with premedicants (xylazine, (dex)medetomidine, acepromazine, midazolam), opioids (morphine, methadone, hydromorphone, butorphanol, nalbuphine, buprenorphine, fentanyl), and NSAIDs. Alfaxalone’s adverse reactions are: hypotension, tachycardia, apnea, hypertension, bradypnea and others.
Status:
US Approved Rx
(2018)
Source:
NDA209128
(2018)
Source URL:
First approved in 1984
Source:
NDA019050
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Sufentanil is a synthetic opioid analgesic. Sufentanil interacts predominately with the opioid mu-receptor. These mu-binding sites are discretely distributed in the human brain, spinal cord, and other tissues. In clinical settings, sufentanil exerts its principal pharmacologic effects on the central nervous system. Its primary actions of therapeutic value are analgesia and sedation. Sufentanil may increase the patient's tolerance for pain and decrease the perception of suffering, although the presence of the pain itself may still be recognized. In addition to analgesia, alterations in mood, euphoria and dysphoria, and drowsiness commonly occur. Sufentanil depresses the respiratory centers, depresses the cough reflex, and constricts the pupils. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Sufentanil's analgesic activity is, most likely, due to its conversion to morphine. Opioids open calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. Sufentanil is used as an analgesic adjunct in anesthesia and as a primary anesthetic drug in procedures requiring assisted ventilation and in the relief of pain.
Status:
US Approved Rx
(2018)
Source:
NDA209128
(2018)
Source URL:
First approved in 1984
Source:
NDA019050
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Sufentanil is a synthetic opioid analgesic. Sufentanil interacts predominately with the opioid mu-receptor. These mu-binding sites are discretely distributed in the human brain, spinal cord, and other tissues. In clinical settings, sufentanil exerts its principal pharmacologic effects on the central nervous system. Its primary actions of therapeutic value are analgesia and sedation. Sufentanil may increase the patient's tolerance for pain and decrease the perception of suffering, although the presence of the pain itself may still be recognized. In addition to analgesia, alterations in mood, euphoria and dysphoria, and drowsiness commonly occur. Sufentanil depresses the respiratory centers, depresses the cough reflex, and constricts the pupils. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Sufentanil's analgesic activity is, most likely, due to its conversion to morphine. Opioids open calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. Sufentanil is used as an analgesic adjunct in anesthesia and as a primary anesthetic drug in procedures requiring assisted ventilation and in the relief of pain.
Status:
US Approved Rx
(2006)
Source:
ANDA040684
(2006)
Source URL:
First approved in 1938
Source:
Dilantin by Parke-Davis
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Phenytoin is an anti-epileptic drug. Phenytoin has been used with much clinical success against all types of epileptiform seizures, except petit mal epilepsy. Phenytoin is a available for oral administration (tablets, capsules, suspension). CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. CEREBYX should be used only when oral phenytoin administration is not possible. Although several potential targets for phenytoin action have been identified within the CNS (Na-K-ATPase, the GABAA receptor complex, ionotropic glutamate receptors, calcium channels and sigma binding sites) to date, though, the best evidence hinges on the inhibition of voltage-sensitive Na+ channels in the plasma membrane of neurons undergoing seizure activity.
Status:
US Approved Rx
(2006)
Source:
ANDA040684
(2006)
Source URL:
First approved in 1938
Source:
Dilantin by Parke-Davis
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Phenytoin is an anti-epileptic drug. Phenytoin has been used with much clinical success against all types of epileptiform seizures, except petit mal epilepsy. Phenytoin is a available for oral administration (tablets, capsules, suspension). CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. CEREBYX should be used only when oral phenytoin administration is not possible. Although several potential targets for phenytoin action have been identified within the CNS (Na-K-ATPase, the GABAA receptor complex, ionotropic glutamate receptors, calcium channels and sigma binding sites) to date, though, the best evidence hinges on the inhibition of voltage-sensitive Na+ channels in the plasma membrane of neurons undergoing seizure activity.
Status:
US Approved Rx
(2006)
Source:
ANDA040684
(2006)
Source URL:
First approved in 1938
Source:
Dilantin by Parke-Davis
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Phenytoin is an anti-epileptic drug. Phenytoin has been used with much clinical success against all types of epileptiform seizures, except petit mal epilepsy. Phenytoin is a available for oral administration (tablets, capsules, suspension). CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. CEREBYX should be used only when oral phenytoin administration is not possible. Although several potential targets for phenytoin action have been identified within the CNS (Na-K-ATPase, the GABAA receptor complex, ionotropic glutamate receptors, calcium channels and sigma binding sites) to date, though, the best evidence hinges on the inhibition of voltage-sensitive Na+ channels in the plasma membrane of neurons undergoing seizure activity.
Status:
US Approved Rx
(2006)
Source:
ANDA040684
(2006)
Source URL:
First approved in 1938
Source:
Dilantin by Parke-Davis
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Phenytoin is an anti-epileptic drug. Phenytoin has been used with much clinical success against all types of epileptiform seizures, except petit mal epilepsy. Phenytoin is a available for oral administration (tablets, capsules, suspension). CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. CEREBYX should be used only when oral phenytoin administration is not possible. Although several potential targets for phenytoin action have been identified within the CNS (Na-K-ATPase, the GABAA receptor complex, ionotropic glutamate receptors, calcium channels and sigma binding sites) to date, though, the best evidence hinges on the inhibition of voltage-sensitive Na+ channels in the plasma membrane of neurons undergoing seizure activity.
Status:
US Approved OTC
Source:
21 CFR 346.10(e) anorectal:local anesthetic dyclonine hydrochloride
Source URL:
First approved in 1955
Source:
DYCLONE by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Dyclonine is an local anesthetic used to provide topical anesthesia to mucous membranes through sodium channel inhibition. It is the active ingredient in Sucrets, an over-the-counter throat lozenge. It has been used as a local anesthetic agent prior to laryngoscopy, bronchoscopy, esophagoscopy, or endotracheal intubation. However, oral solutions no longer are commercially available in the US. Recently, additional activities of dyclonine have been discovered. Dyclonine represents a novel therapeutic strategy that can potentially be repurposed for the treatment of Friedreich's ataxia. Dyclonine enhances the cytotoxic effect of proteasome inhibitors on cancer and multiple myeloma cells.
Status:
Investigational
Source:
NCT02215252: Phase 2 Interventional Completed Diabetic Neuropathy, Painful
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
PF-05089771 is an oral administrated Nav1.7 channel inhibitor. PF-05089771 provided the best opportunity to explore Nav1.7 blockade for the treatment of acute or chronic pain conditions. PF-05089771 has completed Phase II clinical trials of third molar extraction and primary inherited erythromelalgia. The magnitude of efficacy of PF-05089771 in the randomized, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy was disappointing. Although there was a trend towards a reduction in pain and improvement in sleep rating in patients with painful DPN when compared to placebo treatment, this was not statistically significant.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
(+)-SKF-10,047 is a sigma-opioid receptor agonist. (+)-SKF-10,047 is distinct from its (-)-enantiomer in binding pattern and associated behavioural effects. (+)-SKF-10,047 stress-induced motor suppression, while its (-)-optical isomer was inactive. Besides activation of sigma-1 receptor, (+)-SKF-10,047 is inhibitor of Na(V)1.2 and Na(V)1.4 channels.