{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2006)
Source:
NDA022010
(2006)
Source URL:
First approved in 2000
Source:
NDA020971
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Articaine is a dental local anesthetic, which is the most widely used in a number of European countries and is available in many countries around the world. Articaine in combination with epinephrine under the brand name Septocaine is indicated for local, infiltrative, or conductive anesthesia in both simple and complex dental procedures. Local anesthetics block the generation and conduction of nerve impulses, presumably by increasing the threshold for electrical excitation in the nerve, by slowing the propagation of the nerve impulse, and by reducing the rate of rising of the action potential. In general, the progression of anesthesia is related to the diameter, myelination, and conduction velocity of the affected nerve fibers. Articaine blocks the actions on Na+ channels. Epinephrine is a vasoconstrictor added to articaine HCl to slow absorption into the general circulation and thus prolong maintenance of an active tissue concentration.
Status:
US Approved Rx
(2000)
Source:
NDA021014
(2000)
Source URL:
First approved in 2000
Source:
NDA021014
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Oxcarbazepine and its active metabolite (10,11-dihydro-10-hydroxy-carbazepine, MHD) have been effective in animal models of epilepsy that generally predict efficacy in generalized tonic-clonic seizures and partial seizures in humans. The pharmacokinetic profile of oxcarbazepine is less complicated than that of carbamazepine, with less metabolism by the cytochrome P450 system, no production of an epoxide metabolite, and lower plasma protein binding. The clinical efficacy and tolerability of oxcarbazepine have been demonstrated in trials in adults, children, and the elderly. The pharmacological activity of oxcarbazepine is primarily exerted through the 10-monohydroxy metabolite (MHD) of oxcarbazepine. The precise mechanism by which oxcarbazepine and MHD exert their antiseizure effect is unknown; however, in vitro electrophysiological studies indicate that they produce blockade of voltage-sensitive sodium channels, resulting in stabilization of hyperexcited neural membranes, inhibition of repetitive neuronal firing, and diminution of propagation of
synaptic impulses. These actions are thought to be important in the prevention of seizure
spread in the intact brain. In addition, increased potassium conductance and modulation of high-voltage activated calcium channels may contribute to the anticonvulsant effects of the drug.
Status:
US Approved Rx
(2014)
Source:
ANDA201742
(2014)
Source URL:
First approved in 1999
Source:
TEMODAR by MERCK SHARP DOHME
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
NEO 212 is novel DNA alkylating agent exhibiting superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo. NEO212 is a conjugate of temozolomide (TMZ,) with the natural product perillyl alcohol (POH). NEO 212 causes DNA damage and cell death much more efficiently than TMZ because linkage with POH increased it's biological half-life and thus provided greater opportunity for placement of cytotoxic DNA lesions.
Status:
US Approved Rx
(2022)
Source:
ANDA214815
(2022)
Source URL:
First approved in 1999
Source:
NDA021035
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levetiracetam is an anticonvulsant medication used to treat epilepsy. Levetiracetam may selectively prevent hypersynchronization of epileptiform burst firing and propagation of seizure activity. The precise mechanism(s) by which levetiracetam exerts its antiepileptic effect is unknown. The antiepileptic activity of levetiracetam was assessed in a number of animal models of epileptic seizures. Levetiracetam did not inhibit single seizures induced by maximal stimulation with electrical current or different chemoconvulsants and showed only minimal activity in submaximal stimulation and in threshold tests. Levetiracetam also displayed inhibitory properties in the kindling model in rats, another model of human complex partial seizures, both during kindling development and in the fully kindled state. The predictive value of these animal models for specific types of human epilepsy is uncertain. In vitro and in vivo recordings of epileptiform activity from the hippocampus have shown that levetiracetam inhibits burst firing without affecting normal neuronal excitability, suggesting that levetiracetam may selectively prevent hypersynchronization of epileptiform burst firing and propagation of seizure activity. Levetiracetam at concentrations of up to 10 µM did not demonstrate binding affinity for a variety of known receptors, such as those associated with benzodiazepines, GABA (gamma-aminobutyric acid), glycine, NMDA (Nmethyl-D-aspartate), re-uptake sites, and second messenger systems. Furthermore, in vitro studies have failed to find an effect of levetiracetam on neuronal voltage-gated sodium or T-type calcium currents and levetiracetam does not appear to directly facilitate GABAergic neurotransmission. However, in vitro studies have demonstrated that levetiracetam opposes the activity of negative modulators of GABA- and glycine-gated currents and partially inhibits N-type calcium currents in neuronal cells. A saturable and stereoselective neuronal binding site in rat brain tissue has been described for levetiracetam. Experimental data indicate that this binding site is the synaptic vesicle protein SV2A, thought to be involved in the regulation of vesicle exocytosis. Interaction of levetiracetam with the SV2A protein may contribute to the antiepileptic mechanism of action of the drug. Levetiracetam, along with other anti-epileptic drugs, can increase the risk of suicide behavior or thoughts. People taking levetiracetam should be monitored closely for signs of worsening depression, suicidal thoughts or tendencies, or any altered emotional or behavioral states.
Status:
US Approved Rx
(2014)
Source:
ANDA078601
(2014)
Source URL:
First approved in 1996
Source:
NDA020533
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ropivacaine is a member of the amino amide class of local anesthetics and is supplied as the pure S-(-)-enantiomer. It produces effects similar to other local anesthetics via reversible inhibition of sodium ion influx in nerve fibers. Ropivacaine is less lipophilic than bupivacaine and is less likely to penetrate large myelinated motor fibers, resulting in a relatively reduced motor blockade. Thus, ropivacaine has a greater degree of motor-sensory differentiation, which could be useful when the motor blockade is undesirable. The reduced lipophilicity is also associated with decreased potential for central nervous system toxicity and cardiotoxicity. Ropivacaine is indicated for the production of local or regional anesthesia for surgery and for acute pain management.
Status:
US Approved Rx
(1998)
Source:
NDA020818
(1998)
Source URL:
First approved in 1996
Source:
DIOVAN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Valsartan (DIOVAN®) is a tetrazole derivative, and specific angiotensin II type 1 (AT1) receptor blocker that is indicated for the treatment of hypertension, to lower blood pressure. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme. Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Valsartan (DIOVAN®) blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis.
Status:
US Approved Rx
(1995)
Source:
NDA020599
(1995)
Source URL:
First approved in 1995
Source:
NDA020599
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Riluzole, a member of the benzothiazole class, is indicated for the treatment of patients with amyotrophic lateral sclerosis. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. Common adverse reactions include headache, abdominal pain, back pain, vomiting, dyspepsia, diarrhea, dizziness. Riluzole-treated patients that take other hepatotoxic drugs may be at increased risk for hepatotoxicity.
Status:
US Approved Rx
(2001)
Source:
ANDA075500
(2001)
Source URL:
First approved in 1992
Source:
NDA019865
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Sotalol has both beta-adrenoreceptor blocking and cardiac action potential duration prolongation antiarrhythmic properties. Sotalol inhibits response to adrenergic stimuli by competitively blocking β1-adrenergic receptors within the myocardium and β2-adrenergic receptors within bronchial and vascular smooth muscle. It is FDA approved for the treatment of ventricular arrhythmias, symptomatic atrial fibtillation, symptomatic atriall flutter. Common adverse reactions include bradyarrhythmia, chest pain, lightheadedness, palpitations, rash, nausea, dizziness, headache, dyspnea, fatigue. Proarrhythmic events were more common in sotalol treated patients also receiving digoxin. Sotalol should be administered with caution in conjunction with calcium blocking drugs because of possible additive effects on atrioventricular conduction or ventricular function. Patients treated with sotalol plus a catecholamine depletor should therefore be closely monitored for evidence of hypotension and/or marked bradycardia which may produce syncope.
Status:
US Approved Rx
(2024)
Source:
ANDA217617
(2024)
Source URL:
First approved in 1992
Source:
ZEBETA by TEVA WOMENS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Bisoprolol is a cardioselective beta1-adrenergic blocking agent. It lower the heart rate and blood pressure and may be used to reduce workload on the heart and hence oxygen demands. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Bisoprolol can be used to treat cardiovascular diseases such as hypertension, coronary heart disease, arrhythmias, ischemic heart diseases, and myocardial infarction after the acute event. General side effects are: fatigue, asthenia, chest pain, malaise, edema, weight gain, angioedema. Concurrent use of rifampin increases the metabolic clearance of bisoprolol fumarate, shortening its elimination half-life.
Status:
US Approved Rx
(2006)
Source:
ANDA077169
(2006)
Source URL:
First approved in 1990
Source:
DYNACIRC by SMITHKLINE BEECHAM
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Isradipine (tradenames DynaCirc, Prescal) is a calcium channel blocker of the dihydropyridine class. It is usually prescribed for the treatment of high blood pressure in order to reduce the risk of stroke and heart attack. Except for diuretic activity, the mechanism of which is not clearly understood, the pharmacodynamics effects of isradipine observed in whole animals can also be explained by calcium channel blocking activity, especially dilating effects in arterioles, which reduce systemic resistance and lower blood pressure, with a small increase in resting heart rate. Isradipine binds to calcium channels with high affinity and specificity and inhibits calcium flux into cardiac and arterial smooth muscle cells. It exhibits greater selectivity towards arterial smooth muscle cells owing to alternative splicing of the alpha-1 subunit of the channel and increased prevalence of inactive channels in smooth muscle cells. Although like other dihydropyridine calcium channel blockers, isradipine has negative inotropic effects in vitro; studies conducted in intact anesthetized animals have shown that the vasodilating effect occurs at doses lower than those do which affect contractility. In patients with normal ventricular function, isradipine's afterload reducing properties lead to some increase in cardiac output. Effects in patients with impaired ventricular function have not been fully studied. Most adverse reactions were mild and related to the vasodilatory effects of isradipine (dizziness, edema, palpitations, flushing, tachycardia), and many were transient. About 5% of isradipine patients left studies prematurely because of adverse reactions (vs. 3% of placebo patients and 6% of active control patients), principally due to headache, edema, dizziness, palpitations, and gastrointestinal disturbances.