{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
EUTONYL by ABBOTT
(1963)
Source URL:
First approved in 1963
Source:
EUTONYL by ABBOTT
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Pargyline is an irreversible selective monoamine oxidase (MAO)-B inhibitor, which possesses higher selectivity to this isoform in comparison with MAO-A. It was approved under brand name eutonyl for the treatment hypertension, but then this drug was discontinued.
Status:
US Previously Marketed
Source:
QUERTINE by ABBOTT
(1961)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Quercetin is a unique bioflavonoid that has been extensively studied by researchers over the past 30 years. Quercetin, the most abundant of the flavonoids (the name comes from the Latin –quercetum, meaning oak forest, quercus oak) consists of 3 rings and 5 hydroxyl groups. Quercetin is a member of the class of flavonoids called flavonoles and forms the backbone for many other flavonoids including the citrus flavonoids like rutin, hesperidins, Naringenin and tangeritin. It is widely distributed in the plant kingdom in rinds and barks. The best described property of Quercetin is its ability to act as antioxidant. Quercetin seems to be the most powerful flavonoids for protecting the body against reactive oxygen species, produced during the normal oxygen metabolism or are induced by exogenous damage [9, 10]. One of the most important mechanisms and the sequence of events by which free radicals interfere with the cellular functions seem to be the lipid peroxidation leading eventually the cell death. To protect this cellular death to happen from reactive oxygen species, living organisms have developed antioxidant line of defense systems [11]. These include enzymatic and non-enzymatic antioxidants that keep in check ROS/RNS level and repair oxidative cellular damage. The major enzymes, constituting the first line of defence, directly involved in the neutralization of ROS/RNS are: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) The second line of defence is represented by radical scavenging antioxidants such as vitamin C, vitamin A and plant phytochemicals including quercetin that inhibit the oxidation chain initiation and prevent chain propagation. This may also include the termination of a chain by the reaction of two radicals. The repair and de novo enzymes act as the third line of defence by repairing damage and reconstituting membranes. These include lipases, proteases, DNA repair enzymes and transferases. Quercetin is a specific quinone reductase 2 (QR2) inhibitor, an enzyme (along with the human QR1 homolog) which catalyzes metabolism of toxic quinolines. Inhibition of QR2 in plasmodium may potentially cause lethal oxidative stress. The inhibition of antioxidant activity in plasmodium may contribute to killing the malaria causing parasites.
Status:
First approved in 1952
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methbarbital is a barbiturate anticonvulsant, discovered by Merck in 1905. It was introduced to market for treatment of epolepsy by Abbott in 1952, and discontinued in 1990.
Status:
First approved in 1943
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfamerazine is a sulfonamide antibiotic, which acts by inhibiting folic acid synthesis in bacterias. The primary target of sulfamerazine is believed to be dihydropteroate synthetase. Sulfamerazine (in comination with Sulfadiazine and Sulfamethazine) was used in the US under different names, including the earliest brand of Neotrizine. Nowdays, the drugs containing sulfamerazine are no longer available for use in humans in the US, however, they may be prescribed for veterinary purposes.