{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2001)
Source:
ANDA076092
(2001)
Source URL:
First approved in 1970
Source:
NDA016812
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.
Status:
US Approved Rx
(2001)
Source:
ANDA076092
(2001)
Source URL:
First approved in 1970
Source:
NDA016812
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2022)
Source:
ANDA216594
(2022)
Source URL:
First approved in 1968
Source:
NDA016608
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Carbamazepine is an analgesic, anti-epileptic agent that is FDA approved for the treatment of epilepsy, trigeminal neuralgia. It appears to act by reducing polysynaptic responses and blocking the post-tetanic potentiation. It depresses thalamic potential and bulbar and polysynaptic reflexes, including the linguomandibular reflex in cats. Commonly reported side effects of carbamazepine include: dizziness, drowsiness, nausea, ataxia, and vomiting. Carbamazepine is a potent inducer of hepatic CYP1A2, 2B6, 2C9/19, and 3A4 and may reduce plasma concentrations of concomitant medications mainly metabolized by CYP1A2, 2B6, 2C9/19, and 3A4 through induction of their metabolism, like Boceprevir, Cyclophosphamide, Aripiprazole, Tacrolimus, Temsirolimus and others.
Status:
US Approved Rx
(2017)
Source:
ANDA207384
(2017)
Source URL:
First approved in 1968
Source:
NDA016267
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Deferoxamine (brand name Desferal) an iron chelator, is a drug for the treatment of acute iron intoxication and of chronic iron overload due to transfusion-dependent anemias. Deferoxamine chelates iron by forming a stable complex that prevents the iron entering into further chemical reactions. However, drug may cause hypersensitivity reactions, systemic allergic reactions, and cardiovascular, hematologic and neurological adverse reactions. Serious adverse reactions include significant hypotension and marked body weight loss. Principally plasma enzymes metabolize deferoxamine, but the pathways have not yet been defined. The chelate is readily soluble in water and passes easily through the kidney, giving the urine a characteristic reddish color. Some is also excreted in the feces via the bile.
Status:
US Approved Rx
(2017)
Source:
ANDA207384
(2017)
Source URL:
First approved in 1968
Source:
NDA016267
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Deferoxamine (brand name Desferal) an iron chelator, is a drug for the treatment of acute iron intoxication and of chronic iron overload due to transfusion-dependent anemias. Deferoxamine chelates iron by forming a stable complex that prevents the iron entering into further chemical reactions. However, drug may cause hypersensitivity reactions, systemic allergic reactions, and cardiovascular, hematologic and neurological adverse reactions. Serious adverse reactions include significant hypotension and marked body weight loss. Principally plasma enzymes metabolize deferoxamine, but the pathways have not yet been defined. The chelate is readily soluble in water and passes easily through the kidney, giving the urine a characteristic reddish color. Some is also excreted in the feces via the bile.
Status:
US Approved Rx
(2022)
Source:
ANDA216845
(2022)
Source URL:
First approved in 1968
Source:
PATHOCIL by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Dicloxacillin sodium USP is a semisynthetic antibiotic substance which resists destruction by the enzyme penicillinase (beta-lactamase). It is monosodium (2S,5R,6R)-6-[3-(2,6-dichlorophenyl)-5-methyl-4- isoxazolecarboxamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0]heptane-2-carboxylate monohydrate. Like other β-lactam antibiotics, dicloxacillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. Dicloxacillin is administered orally via capsule form or powder for reconstitution.