U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 29 results

Tipranavir (PNU-140690, trade mark APTIVUS) is a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. Tipranavir has potent in vitro activity against a variety of HIV-1 laboratory strains and clinical isolates, including those resistant to ritonavir, as well as HIV-2. The drug is launched in several countries, including the US and in the EU. APTIVUS, co-administered with ritonavir, is indicated for combination antiretroviral treatment of HIV-1 infected patients who are treatment-experienced and infected with HIV-1 strains resistant to more than one protease inhibitor.
The potential antiviral effect of adefovir, an acyclic nucleoside phosphonate analog of 2′-deoxyadenosine monophosphate, was first studied by Holý and De Clercq in 1980s. Adefovir is an acyclic nucleotide analog of adenosine monophosphate which is phosphorylated to the active metabolite adefovir diphosphate by cellular kinases. Adefovir diphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate deoxyadenosine triphosphate and by causing DNA chain termination after its incorporation into viral DNA. Oral adefovir dipivoxil is effective and generally well tolerated in HBeAg-positive and -negative patients chronically infected with wild-type or lamivudine-resistant HBV.
Amprenavir is an inhibitor of HIV-1 protease. Amprenavir binds to the active site of HIV-1 protease and thereby prevents the processing of viral gag and gag-pol polyprotein precursors, resulting in the formation of immature non-infectious viral particles. Amprenavir-containing combination regimens have shown virological efficacy, and have generally been well tolerated, in patients with HIV infection (primarily treatment-naive or protease inhibitor-naive). Fosamprenavir (GW433908, Lexiva, Telzir) is an oral prodrug of amprenavir, with a reduced daily pill burden. The use of protease inhibitors has also been associated with dyslipidemia and an increased risk of cardiovascular disease. Amprenavir activates Pregnane X receptor to mediate dyslipidemia.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.
Efavirenz (brand names Sustiva® and Stocrin®) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and is used as part of highly active antiretroviral therapy (HAART) for the treatment of a human immunodeficiency virus (HIV) type 1. For HIV infection that has not previously been treated, efavirenz and lamivudine in combination with zidovudine or tenofovir is the preferred NNRTI-based regimen. Efavirenz is also used in combination with other antiretroviral agents as part of an expanded postexposure prophylaxis regimen to prevent HIV transmission for those exposed to materials associated with a high risk for HIV transmission.
Status:
US Previously Marketed
First approved in 2006

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Telbivudine is an antiviral drug used in the treatment of hepatitis B infection. It is marketed by Swiss pharmaceutical company Novartis under the trade names Sebivo (Europe) and Tyzeka (United States). Clinical trials have shown it to be significantly more effective than lamivudine or adefovir, and less likely to cause resistance. Telbivudine is a synthetic thymidine nucleoside analogue; it is the L-isomer of thymidine. It is taken orally in a dose of 600 mg once daily with or without food. TYZEKA is the trade name for telbivudine, a synthetic thymidine nucleoside analogue with activity against hepatitis B virus (HBV). The chemical name for telbivudine is 1-((2S,4R,5S)-4-hydroxy-5-hydroxymethyltetrahydrofuran-2-y1)-5-methyl-1H-pyrimidine-2,4-dione, or 1-(2-deoxy-β-L-ribofuranosyl)-5-methyluracil. Telbivudine is a synthetic thymidine nucleoside analogue with activity against HBV DNA polymerase. It is phosphorylated by cellular kinases to the active triphosphate form, which has an intracellular half-life of 14 hours. Telbivudine 5'-triphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate, thymidine 5'-triphosphate. Incorporation of telbivudine 5'-triphosphate into viral DNA causes DNA chain termination, resulting in inhibition of HBV replication. Telbivudine is an inhibitor of both HBV first strand (EC50 value = 1.3 ± 1.6 µM) and second strand synthesis (EC50 value = 0.2 ± 0.2 µM). Telbivudine 5'-triphosphate at concentrations up to 100 µM did not inhibit human cellular DNA polymerases α, β, or γ. No appreciable mitochondrial toxicity was observed in HepG2 cells treated with telbivudine at concentrations up to 10 µM.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Saquinavir (brand names Invirase and Fortovase) is an antiretroviral drug used together with other medications to treat or prevent HIV/AIDS. Saquinavir is an inhibitor of HIV protease. HIV protease is an enzyme required for the proteolytic cleavage of viral polyprotein precursors into individual functional proteins found in infectious HIV. Saquinavir is a peptide-like substrate analog that binds to the protease active site and inhibits the activity of the enzyme. Saquinavir inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature noninfectious virus particles. The most frequent adverse events with saquinavir in either formulation are mild gastrointestinal symptoms, including diarrhea, nausea, loose stools & abdominal discomfort. Invirase is better tolerated than Fortovase.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

The nucleoside analog 2',3'-dideoxycytidine (ddCyd), also known as Zalcitabine is a nucleoside analog reverse transcriptase inhibitor (NRTI) sold under the trade name Hivid. HIVID is indicated in combination with antiretroviral agents for the treatment of HIV infection. It is used as part of a combination regimen with antiretroviral agents. But it was discontinued by Roche Pharmaceuticals on December 31, 2006 due to the availability of newer HIV medicines. Within cells, zalcitabine is converted to the active metabolite, dideoxycytidine 5'-triphosphate (ddCTP), by the sequential action of cellular enzymes. Dideoxycytidine 5'-triphosphate inhibits the activity of the HIV-reverse transcriptase both by competing for utilization of the natural substrate, deoxycytidine 5'-triphosphate (dCTP), and by its incorporation into viral DNA. The lack of a 3'- OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation and, therefore, the viral DNA growth is terminated. The active metabolite, ddCTP, is also an inhibitor of cellular DNA polymerasebeta and mitochondrial DNA polymerase-gamma and has been reported to be incorporated into the DNA of cells in culture.
Tipranavir (PNU-140690, trade mark APTIVUS) is a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. Tipranavir has potent in vitro activity against a variety of HIV-1 laboratory strains and clinical isolates, including those resistant to ritonavir, as well as HIV-2. The drug is launched in several countries, including the US and in the EU. APTIVUS, co-administered with ritonavir, is indicated for combination antiretroviral treatment of HIV-1 infected patients who are treatment-experienced and infected with HIV-1 strains resistant to more than one protease inhibitor.