{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2006)
Source:
ANDA077938
(2006)
Source URL:
First approved in 2000
Source:
MOBIC by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Meloxicam (brand name Mobic) is an nonsteroidal anti-inflammatory drug (NSAID) with analgesic and antipyretic properties. Mobic is indicated for the relief of the signs and symptoms of osteoarthritis and rheumatoid arthritis, and has been available in the U.S. since June 2000. The mechanism of action like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2). Meloxicam concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because meloxicam is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues. MOBIC is contraindicated in patients who have experienced asthma, itching or allergic type reactions after taking aspirin or other NSAIDs. Severe, rarely fatal, anaphylactic-like reactions to NSAIDs have been reported in such patients. As with all NSAIDs, serious GI toxicity such as inflammation, bleeding, ulceration, and perforation of the stomach, small intestine, or large intestine can occur at any time, without symptoms. As with other NSAIDs, meloxicam is not indicated for prevention of thromboembolic events and is not a substitute for aspirin or other drugs indicated for cardiovascular prophylaxis. It was developed by Boehringer Ingelheim and is co-marketed with Abbott Laboratories. Meloxicam is also used in the veterinary field, most commonly in dogs and cats, but also sees off-label use in other animals such as cattle and exotics
Status:
US Approved Rx
(2017)
Source:
ANDA206136
(2017)
Source URL:
First approved in 1982
Source:
NDA018147
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Piroxicam is in a class of drugs called nonsteroidal anti-inflammatory drugs (NSAIDs). It was originally brought to market by Pfizer under the tradename Feldene in 1980, became generic in 1992, and is marketed worldwide under many brandnames. Piroxicam works by reducing hormones that cause inflammation and pain in the body. Piroxicam is used to reduce the pain, inflammation, and stiffness caused by rheumatoid arthritis and osteoarthritis. The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. Piroxicam is used for treatment of osteoarthritis and rheumatoid arthritis.
Status:
US Approved Rx
(2014)
Source:
ANDA203126
(2014)
Source URL:
First approved in 1981
Source:
NDA018482
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Nifedipine has been formulated as both a long- and short-acting 1,4-dihydropyridine calcium channel blocker. Nifedipine is sold under the brand names Adalat and Procardia among others. Nifedipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyzes the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium inhibits the contractile processes of smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload. The vasodilatory effects of nifedipine result in an overall decrease in blood pressure. Nifedipine is used for the management of vasospastic angina, chronic stable angina, hypertension, and Raynaud's phenomenon. May be used as a first line agent for left ventricular hypertrophy and isolated systolic hypertension (long-acting agents).
Status:
US Approved Rx
(1991)
Source:
ANDA072711
(1991)
Source URL:
First approved in 1978
Source:
CLINORIL by MERCK
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Sulindac is a nonsteroidal anti-inflammatory agent (NSAIA) of the arylalkanoic acid class that is marketed in the U.S. by Merck as Clinoril. Like other NSAIAs, it may be used in the treatment of acute or chronic inflammatory conditions. Sulindac is a prodrug, derived from sulfinylindene, that is converted in vivo to an active sulfide compound by liver enzymes. The sulfide metabolite then undergoes enterohepatic circulation; it is excreted in the bile and then reabsorbed from the intestine. This is thought to help maintain constant blood levels with reduced gastrointestinal side effects. Some studies have shown sulindac to be relatively less irritating to the stomach than other NSAIA's except for drugs of the cyclooxygenase-2 (COX-2) inhibitor class. The exact mechanism of its NSAIA properties is unknown, but it is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin synthesis.
Status:
US Approved Rx
(1986)
Source:
ANDA089407
(1986)
Source URL:
First approved in 1960
Source:
CARBOCAINE W/ NEO-COBEFRIN by EASTMAN KODAK
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Mepivicaine is a local anesthetic of the amide type. Mepivicaine as a reasonably rapid onset and medium duration and is known by the proprietary names as Carbocaine and Polocaine. Mepivicaine is used in local infiltration and regional anesthesia. Systemic absorption of local anesthetics produces effects on the cardiovascular and central nervous systems. At blood concentrations achieved with normal therapeutic doses, changes in cardiac conduction, excitability, refractoriness, contractility, and peripheral vascular resistance are minimal. Mepivicaine is used for production of local or regional analgesia and anesthesia by local infiltration, peripheral nerve block techniques, and central neural techniques including epidural and caudal blocks.
Status:
US Approved Rx
(2021)
Source:
ANDA212313
(2021)
Source URL:
First approved in 1940
Source:
Dimenformon Dipropionate by Roche-Organon (H.La Roche; Organon)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Estradiol benzoate is the synthetic benzoate ester of estradiol, a steroid sex hormone vital to the maintenance of fertility and secondary sexual characteristics in females. As the primary, most potent estrogen hormone produced by the ovaries, estradiol binds to and activates specific nuclear receptors. This agent exhibits mild anabolic and metabolic properties, and increases blood coagulability. Although estradiol benzoate is not approved by the FDA for use in humans in the United States, it is approved for veterinary use as a subdermal implant both alone (CELERIN®) and in combination with the anabolic steroid trenbolone acetate (SYNOVEX® Plus).
Status:
US Approved Rx
(2022)
Source:
NDA213953
(2022)
Source URL:
First marketed in 1937
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Class (Stereo):
CHEMICAL (ACHIRAL)
Sematilide (CK-1752) was developed as a novel class III antiarrhythmic agent for the arrhythmia treatment. Sematilide blocks the inward rectifier potassium channel (IK1). The further development of the drug was discontinued.
Class (Stereo):
CHEMICAL (RACEMIC)
Astra Hässle (now Hässle Läkemedel, a subsidiary of AstraZeneca) of Sweden was developing an IV formulation of almokalant for use in the treatment of atrial arrhythmias. Almokalant is a selective blocker of the delayed outward K+ current. Almokalant exhibited properties of a selective class III antiarrhythmic agent, devoid of β-blocking activity, in vitro and in vivo, in animals and humans. In humans, prolongation of the refractoriness of the atria and ventricles has been demonstrated, as well as a prolongation of the ventricular repolarization. A moderate antiarrhythmic efficacy has been disclosed in studies in patients with supraventricular reciprocating tachycardias, with atrial fibrillation and with premature ventricular contractions. Almokalant also has proarrhythmic potential and thedevelopment of almokalant was discontinued due to induction of Torsade de Pointes, which occurred in some susceptible patients during the clinical trials.
Status:
Investigational
Source:
NCT02674191: Not Applicable Interventional Unknown status Orthodontic Anchorage Procedures
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dexivacaine is a local anesthetic drug that has minimal and non-significant side effects.