{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
Possibly Marketed Outside US
Source:
ANDA083231
(1973)
Source URL:
First approved in 1973
Source:
ANDA083231
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Benzyl chloride, or α-chlorotoluene, is a reactive organochlorine compound that is a widely used chemical building block. Industrially, benzyl chloride is the precursor to benzyl esters which are used as plasticizers, flavorants, and perfumes. Phenylacetic acid, a precursor to pharmaceuticals, is produced from benzyl cyanide, which is generated by treatment of benzyl chloride with sodium cyanide. Quaternary ammonium salts, used as surfactants, are readily formed by alkylation of tertiary amines with benzyl chloride. Benzyl chloride is an alkylating agent with very irritating properties to the skin. Indicative of its high reactivity (relative to alkyl chlorides), benzyl chloride reacts with water in a hydrolysis reaction to form benzyl alcohol and hydrochloric acid. In contact with mucous membranes, hydrolysis produces hydrochloric acid. Thus, benzyl chloride is a lachrymator and has been used in chemical warfare.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
US Approved Rx
(2009)
Source:
ANDA079139
(2009)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.