U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ACHIRAL
Molecular Formula C6H5O7.3Li
Molecular Weight 209.923
Optical Activity NONE
Defined Stereocenters 0 / 0
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of LITHIUM CITRATE ANHYDROUS

SMILES

[Li+].[Li+].[Li+].OC(CC([O-])=O)(CC([O-])=O)C([O-])=O

InChI

InChIKey=WJSIUCDMWSDDCE-UHFFFAOYSA-K
InChI=1S/C6H8O7.3Li/c7-3(8)1-6(13,5(11)12)2-4(9)10;;;/h13H,1-2H2,(H,7,8)(H,9,10)(H,11,12);;;/q;3*+1/p-3

HIDE SMILES / InChI

Molecular Formula Li
Molecular Weight 6.941
Charge 1
Count
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 0
Optical Activity NONE

Molecular Formula C6H5O7
Molecular Weight 189.0997
Charge -3
Count
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 0
Optical Activity NONE

Description
Curator's Comment: Description was created based on several sources, including https://www.ncbi.nlm.nih.gov/pubmed/19538681 | https://www.ncbi.nlm.nih.gov/pubmed/23371914 | http://www.rsc.org/periodic-table/element/3/lithium

Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.

Originator

Curator's Comment: The first lithium mineral petalite, LiAlSi4O10, was discovered on the Swedish island of Utö by the Brazilian, Jozé Bonifácio de Andralda e Silva in the 1790s. It was observed to give an intense crimson flame when thrown onto a fire. In 1817, Johan August Arfvedson of Stockholm analysed it and deduced it contained a previously unknown metal, which he called lithium. He realised this was a new alkali metal and a lighter version of sodium. However, unlike sodium he was not able to separate it by electrolysis. In 1821 William Brande obtained a tiny amount this way but not enough on which to make measurements. It was not until 1855 that the German chemist Robert Bunsen and the British chemist Augustus Matthiessen obtained it in bulk by the electrolysis of molten lithium chloride.

Approval Year

Targets

Targets

Primary TargetPharmacologyConditionPotency
6.53 µM [IC50]
2.0 mM [Ki]
Target ID: O95861
Gene ID: 10380.0
Gene Symbol: BPNT1
Target Organism: Homo sapiens (Human)
0.3 mM [IC50]
Conditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Primary
LITHIUM CARBONATE

Approved Use

Lithium is indicated in the treatment of manic episodes of Bipolar Disorder.

Launch Date

1965
PubMed

PubMed

TitleDatePubMed
[Lithium gluconate: systematic and factorial analysis of 104 cases which have been studied for 2 and one-half to 3 years in patients regularly observed and showing periodic cyclothymia or dysthymia].
1974 Mar
[Lithium therapy in manic depressive diseases in old age].
1975
Sinoatrial block during lithium treatment.
1975 Aug
The renal pathology in a case of lithium-induced diabetes insipidus.
1975 Jun
Lithium induced nephrogenic diabetes insipidus: changes in plasma vasopressin and angiotensin II.
1975 Jun
[Treatment of lithium induced polyuria].
1975 Mar 10
[Cardiac electrophysiological effects of lithium gluconate in anesthetized dogs].
1978 Sep-Oct
[Evaluation of the potential cardiotoxicity of propranolol-lithium gluconate association (author's transl)].
1980 Mar-Apr
[Ultrastructural modifications in the thyroid glands of mice treated with lithium gluconate].
1982 Feb 8
Familial hypokalaemic periodic paralysis: prevention of paralytic attacks with lithium gluconate.
1991 Jan
Suppression of herpes simplex virus infections with oral lithium carbonate--a possible antiviral activity.
1996 Nov-Dec
Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms.
2000
The effects of lamotrigine on the pharmacokinetics of lithium.
2000 Sep
Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI.
2000 Sep
Lithium isotopes: differential effects on renal function and histology.
2001 Aug
Ataxia from lithium toxicity successfully treated with high-dose buspirone: a single-case experimental design.
2001 Aug
Prevention of cannabinoid withdrawal syndrome by lithium: involvement of oxytocinergic neuronal activation.
2001 Dec 15
Lithium-induced nephrogenic diabetes insipidus in older people.
2001 Jul
Lithium-induced exacerbation of stutter.
2001 Jul-Aug
A historical cohort study of kidney damage in long-term lithium patients: continued surveillance needed.
2001 Jun
Lithium-induced nephrogenic diabetes insipidus.
2001 Mar
[Nephrotic syndrome and lithium therapy].
2001 May 26
[A case of atropine-resistant bradycardia in a patient on long-term lithium medication].
2001 Nov
Tetraspan protein CD151: a common target of mood stabilizing drugs?
2001 Nov
Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy.
2001 Nov
Mild to severe lithium-induced nephropathy models and urine N-acetyl-beta-D-glucosaminidase in rats.
2001 Oct
Lithium use in octogenarians.
2001 Oct
Synergistic induction of severe hypothermia (poikilothermia) by limbic seizures, acepromazine and physical restraint: role of noradrenergic alpha-1 receptors.
2001 Oct-Nov
[Lithium treatment and hyperparathyroidism].
2001 Sep 20
Steroid-induced mania in an adolescent: risk factors and management.
2001 Summer
Lithium-induced tremor treated with vitamin B6: a preliminary case series.
2002
Central pontine myelinolysis manifested by temporary blindness: a possible complication of lithium toxicity.
2002 Dec
[Reversible cardiomyopathy induced by psychotropic drugs: case report and literature overview].
2002 Dec
Connection between lithium and muscular incoordination.
2002 Feb
Intracerebroventricular antisense to inositol monophosphatase-1 reduces enzyme activity but does not affect Li-sensitive behavior.
2002 Jan
Case report and review of the perinatal implications of maternal lithium use.
2002 Jul
Lithium induces NF-kappa B activation and interleukin-8 production in human intestinal epithelial cells.
2002 Mar 8
A case of Parkinsonism due to lithium intoxication: treatment with Pramipexole.
2002 May
Hydroethidine detection of superoxide production during the lithium-pilocarpine model of status epilepticus.
2002 May
Aminophylline exacerbates status epilepticus-induced neuronal damages in immature rats: a morphological, motor and behavioral study.
2002 May
Sexual side effects associated with valproate.
2002 Oct
Lithium toxicity: a potential interaction with celecoxib.
2002 Sep-Oct
Mood stabilisers plus risperidone or placebo in the treatment of acute mania. International, double-blind, randomised controlled trial.
2003 Feb
Left-sided splenorenal fusion with marked extramedullary hematopoiesis and concurrent lithium toxicity. A case report and review of the literature.
2003 Jan
Lithium-induced periodic alternating nystagmus.
2003 Jan 28
[Lithium gluconate 8% in the treatment of seborrheic dermatitis].
2007 Apr
Anti-inflammatory effects of lithium gluconate on keratinocytes: a possible explanation for efficiency in seborrhoeic dermatitis.
2008 Jun
Magnetic resonance spectroscopy of the ischemic brain under lithium treatment. Link to mitochondrial disorders under stroke.
2015 Jul 25
Topical Treatment of Facial Seborrheic Dermatitis: A Systematic Review.
2017 Apr
Treatment of seborrheic dermatitis: a comprehensive review.
2019 Mar
Patents

Sample Use Guides

Optimal patient response to Lithium Carbonate usually can be established and maintained with 600 mg t.i.d. Optimal patient response to Lithium Oral Solution usually can be established and maintained with 10 mL (2 full teaspoons) (16 mEq of lithium) t.i.d. Such doses will normally produce an effective serum lithium level ranging between 1.0 and 1.5 mEq/l. Dosage must be individualized according to serum levels and clinical response. Regular monitoring of the patient’s clinical state and of serum lithium levels is necessary. Serum levels should be determined twice per week during the acute phase, and until the serum level and clinical condition of the patient have been stabilized.
Route of Administration: Oral
Although lithium at a high concentration (10 mM) activated β-catenin in different types of neurons, β-catenin shifted to the nucleus at a therapeutically relevant concentration (1 mM) only in thalamic neurons, both in vivo and in vitro.
Substance Class Chemical
Created
by admin
on Sat Dec 16 01:39:47 GMT 2023
Edited
by admin
on Sat Dec 16 01:39:47 GMT 2023
Record UNII
3655633623
Record Status Validated (UNII)
Record Version
  • Download
Name Type Language
LITHIUM CITRATE ANHYDROUS
Common Name English
LITHIUM CITRATE [MI]
Common Name English
CITRIC ACID TRILITHIUM SALT
Common Name English
2-HYDROXY-1,2,3-PROPANETRICARBOXYLIC ACID LITHIUM SALT (1:3)
Common Name English
Code System Code Type Description
FDA UNII
3655633623
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY
CAS
919-16-4
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY
EPA CompTox
DTXSID70883185
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY
ECHA (EC/EINECS)
213-045-8
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY
MERCK INDEX
m6856
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY Merck Index
WIKIPEDIA
Lithium citrate
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY
PUBCHEM
13520
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY
SMS_ID
100000181637
Created by admin on Sat Dec 16 01:39:47 GMT 2023 , Edited by admin on Sat Dec 16 01:39:47 GMT 2023
PRIMARY
Related Record Type Details
SOLVATE->ANHYDROUS
PARENT -> SALT/SOLVATE
PARENT -> SALT/SOLVATE
Related Record Type Details
ACTIVE MOIETY