{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
ZURAMPIC by IRONWOOD PHARMS INC
(2015)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
FARYDAK by SECURA
(2015)
Source URL:
First approved in 2015
Source:
FARYDAK by SECURA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Panobinostat is an oral deacetylace (DAC) inhibitor approved on February 23, 2015 by the FDA for the treatment of multiple myeloma. The approval was accelerated based on progression-free survival, therefore confirmatory trials by the sponsor to demonstrate clinical efficacy in multiple myeloma treatment are in progress of being conducted. Panobinostat is marketed by Novartis under the brand name Farydak. Panobinostat is a deacetylase (DAC) inhibitor. DACs, also known as histone DACs (HDAC), are responsible for regulating the acetylation of about 1750 proteins in the body; their functions are involved in many biological processes including DNA replication and repair, chromatin remodelling, transcription of genes, progression of the cell-cycle, protein degradation and cytoskeletal reorganization. In multiple myeloma, there is an overexpression of DAC proteins. Panobinostat inhibits class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10) and class IV (HDAC 11) proteins. Panobinostat's antitumor activity is believed to be attributed to epigenetic modulation of gene expression and inhibition of protein metabolism. Panobinostat also exhibits cytotoxic synergy with bortezomib, a proteasome inhibitor concurrently used in treatment of multiple myeloma.
Status:
US Previously Marketed
Source:
UTIBRON by NOVARTIS
(2015)
Source URL:
First approved in 2011
Source:
ARCAPTA NEOHALER by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Indacaterol is an ultra-long-acting beta-adrenoceptor agonist developed by Novartis. It was approved by the European Medicines Agency (EMA) under the trade name Onbrez Breezhaler on November 30, 2009, and by the United States Food and Drug Administration (FDA), under the trade name Arcapta Neohaler, on July 1, 2011. It needs to be taken only once a day, unlike the related drugs formoterol and salmeterol. It is licensed only for the treatment of chronic obstructive pulmonary disease (COPD) (long-term data in patients with asthma are thus far lacking). It is delivered as an aerosol formulation through a dry powder inhaler.
Status:
US Previously Marketed
Source:
VIOXX by MERCK
(1999)
Source URL:
First approved in 1999
Source:
VIOXX by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Rofecoxib is a nonsteroidal anti-inflammatory drug which selectively inhibits COX-2 and subsequent prostaglandin synthesis. The drug was developed by Merk and approved by FDA in 1999 for relief of signs and symptoms of arthritis, acute pain in adults, and painful menstrual cycles under the name Vioxx. Later on Merck voluntarily withdrawn Vioxx from the market due to safety concerns (high risk of heart attack and stroke).
Status:
US Previously Marketed
Source:
NICLOCIDE by BAYER PHARMS
(1982)
Source URL:
First approved in 1982
Source:
NICLOCIDE by BAYER PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Niclosamide is an antihelminth used against tapeworm infections. It may act by the uncoupling of the electron transport chain to ATP synthase. The disturbance of this crucial metabolic pathway prevents creation of adenosine tri-phosphate (ATP), an essential molecule that supplies energy for metabolism. Niclosamide works by killing tapeworms on contact. Adult worms (but not ova) are rapidly killed, presumably due to uncoupling of oxidative phosphorylation or stimulation of ATPase activity. The killed worms are then passed in the stool or sometimes destroyed in the intestine. Niclosamide may work as a molluscicide by binding to and damaging DNA. Niclosamide is used for the treatment of tapeworm and intestinal fluke infections: Taenia saginata (Beef Tapeworm), Taenia solium (Pork Tapeworm), Diphyllobothrium latum (Fish Tapeworm), Fasciolopsis buski (large intestinal fluke). Niclosamide is also used as a molluscicide in the control of schistosomiasis. Niclosamide was marketed under the trade name Niclocide, now discontinued.
Status:
US Previously Marketed
Source:
COLGATE TOTAL by COLGATE PALMOLIVE
(1997)
Source URL:
First approved in 1969
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Triclosan was used as a hospital scrub in the 1970s. Since then, it has expanded commercially and is now prevalent in soaps (0.10-1.00%), shampoos, deodorants, toothpastes, mouth washes, cleaning supplies and pesticides. It is part of consumer products, including kitchen utensils, toys, bedding, socks and trash bags. In healthcare, triclosan is used in surgical scrubs and hand washes. Use in surgical units is effective with a minimum contact time of approximately two minutes. More recently, showering with 2% triclosan has become a recommended regimen in surgical units for the decolonization of patients whose skin carries methicillin-resistant Staphylococcus aureus (MRSA). Triclosan is also used in the coatings for some surgical sutures. Triclosan has been employed as a selective agent in molecular cloning. At high concentrations, triclosan acts as a biocide with multiple cytoplasmic and membrane targets. However, at the lower concentrations seen in commercial products, triclosan appears bacteriostatic, and it targets bacteria primarily by inhibiting fatty acid synthesis. Triclosan binds to bacterial enoyl-acyl carrier protein reductase (ENR) enzyme, which is encoded by the gene FabI. This binding increases the enzyme's affinity for nicotinamide adenine dinucleotide (NAD+). This results in the formation of a stable, ternary complex of ENR-NAD+-triclosan, which is unable to participate in fatty acid synthesis. Fatty acids are necessary for building and reproducing cell membranes. Humans do not have an ENR enzyme and thus are not affected.
Status:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
STANOLONE, also known as dihydrotestosterone, is a potent androgenic metabolite of testosterone and anabolic agent for systemic use. It may be used as a replacement of male sex steroids in men who have androgen deficiency, for example as a result of the loss of both testes, and also the treatment of certain rare forms of aplastic anemia which are or may be responsive to anabolic androgens.
Status:
US Previously Marketed
Source:
Vanillin U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. Vanillin is a natural substance widely found in many plant species and often used in beverages, foods, cosmetics, and pharmaceutical products. Antioxidant and anticancer potential have been described for this compound. Vanillin has been classified as
a bioantimutagen and is able to inhibit mutagenesis induced
by chemical and physical mutagens in various cell systems. Vanillin, a selective agonist of TRPV1, has been shown to attenuate i.c.v. STZ and AlCl3+d-galactose induced experimental Alzheime's disease (AD).
Status:
US Previously Marketed
Source:
Ammoniated Glycyrrhizin U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Ammoniated Glycyrrhizin U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the
potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate
is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1,
1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Status:
Possibly Marketed Outside US
Source:
Dexinling by Shenzhen Deyintang Biotechnology Co., Ltd.
(2022)
Source URL:
First approved in 2022
Source:
Dexinling by Shenzhen Deyintang Biotechnology Co., Ltd.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sesamin is a naturally occurring compound found in sesame oil and in the bark and fruit of certain plant species. SESAMIN, (±)- is a racemic dl-form. The dl-form is also known as fagarol, and may be isolated from the bark of various fagara species. Sesamin, either as the d-form or the dl-form, has now been found to possess psychotropic activity, i.e., administration of appropriate dosages to a human or animal subject elicits a psychotropic response. Sesamin is catered to be a nutritional supplement that confers antioxidant and antiinflammatory effects (if touting its health properties) or possibly being an estrogen receptor modulator and fat burner (if targeting athletes or persons wishing to lose weight).
Sesamin has a few mechanisms, and when looking at it holistically it can be summed up as a fatty acid metabolism modifier. It appears to inhibit an enzyme known as delta-5-desaturase (Δ5-desaturase) which is a rate-limiting enzyme in fatty acid metabolism; inhibiting this enzyme results in lower levels of both eicosapentaenoic acid (EPA, one of the two fish oil fatty acids) as well as arachidonic acid, and this mechanism appears to be relevant following oral ingestion. The other main mechanism is inhibiting a process known as Tocopherol-ω-hydroxylation, which is the rate-limiting step in the metabolism of Vitamin E; by inhibiting this enzyme, sesamin causes a relative increase of vitamin E in the body but particularly those of the gamma subset (γ-tocopherol and γ-tocotrienol) and this mechanism has also been confirmed to be active following oral ingestion. Sesamin is a potent and specific inhibitor of delta 5 desaturases in polyunsaturated fatty acid biosynthesis. Sesamin inhibits particular CYP3A enzymes that are involved in vitamin E metabolism, where the enzyme initially ω-hydroxylates vitamin E (required step) and then the rest of vitamin E is subject to fat oxidation. By inhibiting this step, sesamin causes an increase in circulating and organ concentrations of vitamin E. Sesamin is thought to have PPARα activating potential in the liver, but it is uncertain how much practical relevance this has in humans due to this being a mechanism that differs between species.