{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT01452373: Phase 3 Interventional Completed Vasomotor Symptoms
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acolbifene, the active metabolite of EM-800, was identified as a pure antagonist that acts on both activation domains of the ERs. It is in Phase III clinical trials for the prevention of breast cancer and vasomotor symptoms (Hot flush) in postmenopausal women. Most commonly reported adverse events included irregular menses, leg/muscle cramps, diarrhea, and hot flashes. No serious adverse events were reported.
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
The novel compounds clamikalant (HMR 1883) or its sodium salt HMR 1098) have been shown to block selectively Kir6.2/SUR1-composed K(ATP) channels. Clamikalant is under development by Aventis Pharma (formerly Hoechst Marion Roussel) for the potential treatment of heart arrest and ventricular arrhythmias. Nevertheless, clamikalant and its sodium salt did not pass the clinical trials
Status:
Investigational
Source:
NCT00957905: Phase 2 Interventional Completed Recurrent Extragonadal Seminoma
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Alvocidib (also known as Flavopiridol or HMR-1275) is a flavonoid alkaloid CDK9 kinase inhibitor under clinical development for the treatment of acute myeloid leukemia, by Tolero Pharmaceuticals, Inc. As a broad spectrum CDK inhibitor, Alvocidib can inhibit cell cycle progression in either G1 or G2 and induces G1 arrest in either MCF-7 or MDA-MB-468 cells by inhibition of the CDK4 or CDK2 kinase activity. Alvocidib exhibits potent cytotoxicity against a wide variety of tumor cell lines (LNCAP, HCT116, A2780, K562, PC3, and Mia PaCa-2) with IC50 values ranging from 16 nM for LNCAP to 130 nM for K562. Administration of Alvocidib at 7.5 mg/kg for 7 days displays slight antitumor activity against P388 murine leukemia, and active against the human A2780 ovarian carcinoma implanted sc in nude mice). Alvocidib treatment at 1-2.5 mg/kg for 10 days significantly suppresses collagen-induced arthritis in mice in a dose-dependent manner, by inhibiting synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII are maintained. Tolero Pharmaceuticals Inc. announced that the FDA has granted orphan drug designation for Alvocidib, its cyclin-dependent kinase small molecule inhibitor, for the treatment of patients with acute myeloid leukemia.
Status:
Investigational
Source:
NCT01452373: Phase 3 Interventional Completed Vasomotor Symptoms
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acolbifene, the active metabolite of EM-800, was identified as a pure antagonist that acts on both activation domains of the ERs. It is in Phase III clinical trials for the prevention of breast cancer and vasomotor symptoms (Hot flush) in postmenopausal women. Most commonly reported adverse events included irregular menses, leg/muscle cramps, diarrhea, and hot flashes. No serious adverse events were reported.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
GV 150526A (gavestinel) is an investigational drug for a neuroprotective therapy of acute ischemic stroke within 6 hours of symptom onset. It is a potent and selective non-competitive antagonist at the glycine site of the N-methyl-D-aspartate receptor (NMDA) which reduces infarct volume in experimental stroke models. Gavestinel acts at the strychnine-insensitive glycine binding site of the NMDA receptor-channel complex with nanomolar affinity (pKi = 8.5), coupled with high glutamate receptor selectivity. Gavestinel displays higher than 1000-fold selectivity over NMDA, AMPA and kainate binding sites and is orally bioavailable and active in vivo. GV 150526A inhibited convulsions induced by NMDA in mice, when administered by both IV and po routes (ED50 = 0.06 and 6 mg/kg, respectively). The safety and efficacy of GV150526 were studied in two phase III randomized placebo-controlled clinical trials of acute ischemic stroke patients within 6 h from onset [The Glycine Antagonist in Neuroprotection (GAIN) International and GAIN Americas Trials] sponsored by GlaxoSmithKline. The results of these trials suggested that gavestinel was not of substantial benefit or harm to patients with primary intracerebral hemorrhage.
Status:
Investigational
Source:
NCT01931241: Phase 1 Interventional Unknown status Hypercholesterolemia
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Hyodeoxycholic acid, also known as HDCA, is a secondary bile acid. Natural 6alpha-hydroxylated bile acids are receptor-specific activators of nuclear liver X receptor alpha (LXRalpha), a nuclear receptor regulating the expression of the cholesterol 7alpha-hydroxylase gene. AHRO-001 (Hyodeoxycholic acid) is in phase I clinical trials for the treatment of atherosclerosis. Through a complex signaling processes utilizing LXR receptors, the compound is designed to increase the efficiency of cholesterol efflux using the HDL cells, which act on all cholesterol in the arterial circulation as well as in the lipid core of plaque deposits in the artery walls. Use of AHRO-001 has shown no adverse effects on morbidity, mortality or toxicity and has been well tolerated at high doses.
Status:
US Approved Allergenic Extract
(1994)
Source:
BLA103738
(1994)
Source URL:
First approved in 1961
Source:
NDA012911
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Propylparaben is a bacteriostatic and fungistatic agent used as a preservative in cosmetic products, food and drugs. As a food additive, it has the E number E216. To increase the activity and reduce its dose propylparaben is used in a mixture with other parabens and in combination with other types of preservatives. Propylparaben is a chemical allergen capable of producing immunologically mediated hypersensitivity reactions. Chemically it is an ester of p-hydroxybenzoic acid.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(7) dandruff cresol, saponated
Source URL:
First approved in 2020
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
p-cresol, also known as also 4-methylphenol, is a unique bacterial metabolite from protein fermentation that is not produced by human enzymes, this metabolites has been frequently used to assess the degree of proteolytic fermentation. Recently investigation showed that p-cresol measurements might help to predict cardiovascular disease risk in renal patients over a wide range of residual renal function, beyond traditional markers of glomerular filtration. In addition, there were studies, which revealed, that urinary p-cresol was elevated in young French children with autism spectrum disorder.
Status:
US Previously Marketed
Source:
DUZALLO by IRONWOOD PHARMS INC
(2017)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
DUZALLO by IRONWOOD PHARMS INC
(2017)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.