U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Sodium artesunate, an artemisinin derivative, is used in malaria treatment. Artesunate, has been licensed in Thailand for the treatment of falciparum malaria since 1990. It is a potent antimalarial drug that can reduce parasitaemia by 90% within 24 h of administration. Sodium artesunate was first isolated in China, it is a water soluble antimalaria used clinically in China.
Osilodrostat (INN, USAN) (developmental code name LCI-699) is an orally active, non-steroidal corticosteroid biosynthesis inhibitor which is under development by Novartis for the treatment of Cushing's syndrome and pituitary ACTH hypersecretion (a specific subtype of Cushing's syndrome). Osilodrostat specifically acts as a potent and selective inhibitor of aldosterone synthase (CYP11B2) and at higher dosages of 11β-hydroxylase (CYP11B1). Osilodrostat decreases plasma and urinary aldosterone levels and rapidly corrects hypokalemia, in patients with primary aldosteronism and hypertension. At doses ≥1 mg o.d. Osilodrostat markedly increases 11-deoxycortisol plasma levels and blunts ACTH-stimulated cortisol release in ≈20% of patients, consistent with the inhibition of CYP11B1. In patients with resistant hypertension, Osilodrostat produces a non-significant reduction in blood pressure, possibly due to the increase in 11-deoxycortisol levels and the stimulation of the hypothalamic-pituitary-adrenal feedback axis. Because of the lack of selectivity, poor antihypertensive effect, and short half-life, the development of Osilodrostat as antihypertensive was halted. As of 2017, Osilodrostat is in phase III and phase II clinical trials for the treatment of pituitary ACTH hypersecretion and Cushing's syndrome, respectively.

Class (Stereo):
CHEMICAL (ACHIRAL)



Tafamidis meglumine (Vyndaqel®, Pfizer) is a novel, first-in-class drug for the treatment of transthyretin familial amyloid polyneuropathy (TTR-FAP), a rare neurodegenerative disorder characterized by progressive sensory, motor and autonomic impairment that is ultimately fatal. Pathogenic mutations in the transthyretin (TTR) protein lead to destabilization of its tetrameric structure and subsequent formation of amyloid aggregates. Tafamidis is a small-molecule inhibitor that binds selectively to TTR in human plasma and kinetically stabilizes the tetrameric structure of both wild-type TTR and a number of different mutants. Clinical trials indicate that tafamidis slows disease progression in patients with TTR-FAP and reduces the burden of disease, demonstrating improvement in small and large nerve fiber function, modified body mass index and lower extremity neurological examination. Tafamidis meglumine has been launched for TTR FAP in the EU, Japan, Argentina, Malta and Mexico, and is preregistration in the US for this indication.
Selinexor (KPT-330) is a first in class XPO1 antagonist being evaluated in multiple later stage clinical trials in patients with relapsed and/or refractory hematological and solid tumor malignancies.
Status:
First approved in 2019

Class (Stereo):
CHEMICAL (ABSOLUTE)

LEFAMULIN is a pleuromutilin antibiotic under development for the treatment of community-acquired bacterial pneumonia, as well as acute bacterial skin and skin structure infections. It inhibits bacterial protein synthesis by binding to the peptidyl transferase center of the 50S ribosome, resulting in the cessation of bacterial growth.
Entrectinib (previously known as RXDX-101, NMS-E628) is an investigational drug, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Entrectinib (RXDX-101) is a selective inhibitor for all three Trk receptor tyrosine kinases encoded by the three NTRK genes, as well as the ROS1 and ALKreceptor tyrosine kinases.This investigational drug is active at low nanomolar concentrations, allowing for once-daily oral administration to patients whose tumors have been shown to have gene rearrangements in NTRK, ROS1, or ALK. Nerviano Medical Sciences, the original sponsor for entrectinib (formerly referred to as NMS-1191372), initiated the first-in-human Phase 1 study ALKA-372-001 in Italy in October 2012. The study is currently ongoing in Italy. Entrectinib is currently being tested in a global phase 2 basket clinical trial called STARTRK-2. In the U.S., entrectinib has orphan drug designation and rare pediatric disease designation for the treatment of neuroblastoma and orphan drug designation for treatment of TrkA-, TrkB-, TrkC-, ROS1- and ALK-positive non-small cell lung cancer (NSCLC) and metastatic colorectal cancer (mCRC).
ADX-N05, originally discovered by SK Holdings, is a selective dopamine and norepinephrine reuptake inhibitor (DNRI). ADX-N05 (Solriamfetol, sold under the brand name Sunosi) is approved in the US and is under regulatory review in the EU to improve wakefulness in adult patients with hypersomnia associated with narcolepsy or obstructive sleep apnoea.The US FDA has approved solriamfetol (Sunosi, Jazz Pharmaceuticals) for the treatment of excessive daytime sleepiness in adults with narcolepsy or obstructive sleep apnea.The dual-acting dopamine and norepinephrine reuptake inhibitor is approved for narcolepsy in once-daily 75 mg and 150 mg doses, and in obstructive sleep apnea in once-daily 37.5 mg, 75 mg, and 150 mg doses.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Tenapanor is an inhibitor of the sodium-proton (Na(+)/H(+)) exchanger NHE3 and reduces sodium absorption in the GI tract, thus increasing intestinal fluid. Ardelyx has completed Phase 3 development of tenapanor for the treatment of irritable bowel syndrome with constipation (IBS-C) and submitted a new drug application to the U.S. Food and Drug Administration for the treatment of patients with IBS-C. In addition, tenapanor successfully completed phase III clinical trial for the treatment of hyperphosphatemia in people with end-stage renal disease who are on dialysis and RDX013, a potassium secretagogue program for the potential treatment of high potassium, or hyperkalemia, a problem among certain patients with kidney and/or heart disease.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pretomanid (PA-824) is an experimental anti-tuberculosis drug. Pretomanid is a bicyclic nitroimidazole-like molecule with a very complex mechanism of action. It is active against both replicating and hypoxic, non-replicating Mycobacterium tuberculosis. As a potential TB therapy, it has many attractive characteristics - most notably its novel mechanism of action, its activity in vitro against all tested drug-resistant clinical isolates, and its activity as both a potent bactericidal and a sterilizing agent in mice. In addition, the compound shows no evidence of mutagenicity in a standard battery of genotoxicity studies, no significant cytochrome P450 interactions, and no significant activity against a broad range of Gram-positive and Gram-negative bacteria. This compound has been developed by TB Alliance and is a potential cornerstone of future TB and drug-resistant TB treatment regimens. It is currently undergoing Phase III clinical trials.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Cenobamate (also known as YKP3089) is a small molecule sodium channel blocker in development for the treatment of partial-onset seizures in adult patients. In mice and rats, Cenobamate displayed an anticonvulsant activity in the maximal electroshock test and prevented seizures induced by chemical convulsants such as pentylenetetrazol and picrotoxin. In addition, Cenobamate was reported to be effective in two models of focal seizure, the hippocampal kindled rat and the mouse 6 Hz psychomotor seizure models. Two completed adequate and well-controlled clinical studies demonstrated a significant reduction in focal seizures with Cenobamate in patients with epilepsy, and a long-term open-label phase 3 safety clinical trial is currently ongoing. Cenobamate is considered a new generation antiepileptic therapy and clinical trials have shown that it may be more effective and safer than existing drugs. If licensed, Cenobamate will offer a new adjunctive treatment option for patients with partial focal epilepsy.