{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2004)
Source:
NDA021264
(2004)
Source URL:
First marketed in 1880
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Apomorphine (brand names: Apokyn, Ixense, Spontane, Uprima) is indicated for the acute, intermittent treatment of hypomobility, “off” episodes (“end-of-dose wearing off” and unpredictable “on/off” episodes) in patients with advanced Parkinson’s disease. Apomorphine has been studied as an adjunct to other medications. It is a non-ergoline dopamine agonist with high in vitro binding affinity for the dopamine D4 receptor, and moderate affinity for the dopamine D2, D3, and D5, and adrenergic α1D, α2B, α2C receptors. The precise mechanism of action as a treatment for Parkinson’s disease is unknown, although it is believed to be due to stimulation of post-synaptic dopamine D2-type receptors within the caudate-putamen in the brain.
Status:
US Approved OTC
Source:
21 CFR 333.210(g) antifungal clotrimazole
Source URL:
First approved in 1975
Source:
LOTRIMIN by SCHERING PLOUGH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Clotrimazole is an anti-fungal medicine indicated for the treatment of vaginal yeast infections and tinea. It can be used either in combination with other drugs (betamethasone dipropionate) or alone, in form of topical or vaginal cream. The drug exerts its action by inhibiting lanosterol demethylase thereby affecting the growth of fungi.
Status:
US Approved OTC
Source:
21 CFR 333.210(a) antifungal clioquinol
Source URL:
First approved in 1961
Source:
NYSTAFORM by BAYER PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Clioquinol is a broad-spectrum antibacterial with antifungal properties, bacteriostatic. It is used as an antifungal and antiprotozoal topical drug OTC product for treatment of human infections. Previousely was used for wide number of intestinal disorders including lambliasis, shigellosis, balantidiral dysentery and some forms of diarrheas. The physiologic effect of clioquinol is by increased histamine release and cell-mediated immunity. It is a member of a family hydroxyquinolines which inhibit certain enzymes related to DNA replication. It is a copper, iron and zink chelating agent. It is an organic molecule with a quinolinic acid as its apparent core which itself is a neurotransmitter. In large doses it possesses neurotoxicity and may induce neurological disease such as subacute myelo-optic neuropathy by creating copper deficiency that leads to zink excess. SMON (Sub-Acute-Myelo-Optical-Neuropathy) - a polio-like disease began as an epidemic in 1959 in Japan was believed to be a Clioquinol caused. Clioquinol is a standardized chemical allergen. It has been resurrected as a potential treatment for Alzheimer's disease since it perturbs metallo-chemistry of amyloid and clioquinol treatment has been shown to be beneficial in a mouse model of Alzheimer's disease.
Status:
US Approved OTC
Source:
21 CFR 340.10 stimulant caffeine
Source URL:
First marketed in 1921
Source:
Citrated Caffeine U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases.
Caffeine is used by mouth or rectally in combination with painkillers (such as aspirin and acetaminophen) and a chemical called ergotamine for treating migraineheadaches. It is also used with painkillers for simple headaches and preventing and treating headaches after epidural anesthesia. Caffeine creams are applied to the skin to reduce redness and itching in dermatitis. Healthcare providers sometimes give caffeine intravenously (by IV) for headache after epidural anesthesia, breathing problems in newborns, and to increase urine flow. In foods, caffeine is used as an ingredient in soft drinks, energy drinks, and other beverages.
Status:
US Approved OTC
Source:
21 CFR 343.13(b) internal analgesic:rheumatologic aspirin (buffered)
Source URL:
First marketed in 1899
Source:
Aspirin by Friedr. Bayer & Co., Elberfeld, Germany
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Aspirin is a nonsteroidal anti-inflammatory drug. Aspirin is unique in this class of drugs because it irreversibly inhibits both COX-1 and COX-2 activity by acetylating a serine residue (Ser529 and Ser516, respectively) positioned in the arachidonic acid-binding channel, thus inhibiting the synthesis of prostaglandins and reducing the inflammatory response. The drug is used either alone or in combination with other compounds for the treatment of pain, headache, as well as for reducing the risk of stroke and heart attacks in patients with brain ischemia and cardiovascular diseases.
Status:
Investigational
Source:
NCT04307953: Phase 2 Interventional Recruiting Fibrodysplasia Ossificans Progressiva
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Saracatinib (AZD0530) is an oral, dual inhibitor of c-Src/Abl kinases initially developed by AstraZeneca for the treatment of cancer. The drug was tested for many neoplasms and reached phase III for ovarian cancer (in combination with paclitaxel), however without demonstrating any significant effect. Sarcatinib is also tested in patients with Alzheimer's Disease (Phase II). Its effect on Alzheimer's Disease patients is explained by inhibition of another kinase, Fyn, which is highly expressed in brain.
Status:
Investigational
Source:
NCT01741116: Phase 2 Interventional Completed Hormone Refractory Prostate Cancer
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Status:
Investigational
Source:
NCT01760525: Phase 1 Interventional Completed Solid Tumor With p53 Wild Type Status
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CGM-097, a novel, highly optimized, and selective inhibitor of the p53-Mdm2 interaction. CGM-097 binds to human Mdm2 protein with a Ki value of 1.3 nM, activates p53 in human cells and induces robust p53-dependent cell cycle arrest and apoptosis in human p53 wild-type tumor cells. Its activity and selectivity has been tested and confirmed across a large panel of cancer cell lines from the Cancer Cell Line Encyclopedia. CGM-097 displays desirable pharmacokinetic and pharmacodynamic profiles in animals together with excellent oral bioavailability, which triggers rapid and sustained activation of p53-dependent pharmacodynamic biomarkers resulting in tumor regression in multiple xenografted models of p53 wild-type human cancer. The validation and understanding of its mechanism of action, the overall favorable drug-like properties and the characterization of its on-target toxicological profile in preclinical species strongly supported the initiation of Phase I clinical trials with CGM-097 in pre-selected patients with p53 wild-type tumors.
Status:
Investigational
Source:
NCT03334617: Phase 2 Interventional Active, not recruiting Non-Small Cell Lung Cancer
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Vistusertib (AZ-2014) is a dual inhibitor of mTORC1/mTORC2 which was developed by AstraZeneca for the treatment of cancer. The drug is under clinical development (phase II) in patients with Renal Carcinoma, Squamous Non Small Cell Lung Cancer, Diffuse Large B-Cell Lymphoma, Meningioma, Breast cancer and Gastric cancer, either alone or in combination therapy. Vistusertib penetrates blood-brain barrier.
Status:
Investigational
Source:
NCT00002385: Not Applicable Interventional Completed HIV Infections
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Fozivudine tidoxil is a thioether lipid–Zidovudine (ZDV) conjugate. After intake it is split intracellularly into the lipid moiety and ZDV-monophosphate, which is subsequently phosphorylated to the active metabolite ZDV-triphosphate. The rationale behind the development of fozivudine (FZD) was to take advantage of the high cleavage activity in mononuclear cells and other organs resulting in increased amounts of intracellular ZDV available for phosphorylation to the active metabolite, and a very low activity in red blood and stem cells, which should result in reduced haematologic toxicity. It is member of the family of nucleoside reverse transcriptase (RT) inhibitors. Fozivudine tidoxil has been in Phase II clinical trials for the treatment of HIV infection. There were three adverse events possibly related to fozivudine: urine abnormality, gastrointestinal pain and abnormal dreams.