{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2011)
Source:
ANDA091621
(2011)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (RACEMIC)
Chloroquine (brand name Aralen) is indicated for the suppressive treatment and for acute attacks of malaria due to P. vivax, P.malariae, P. ovale, and susceptible strains of P. falciparum. The drug is also indicated for the treatment of extraintestinal amebiasis. In addition, chloroquine is in clinical trials as an investigational antiretroviral in humans with HIV-1/AIDS and as a potential antiviral agent against chikungunya fever. The mechanism of plasmodicidal action of chloroquine is not completely certain. However, is existed theory, that like other quinoline derivatives, it is thought to inhibit heme polymerase activity. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function.
Status:
US Approved Rx
(2021)
Source:
ANDA212296
(2021)
Source URL:
First approved in 1942
Source:
Doxychol by Breon
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures. As a bile acid, deoxycholic acid emulsifies fat in the gut. Synthetically derived deoxycholic acid, when injected, stimulates a targeted breakdown of adipose cells by disrupting the cell membrane and causing adipocytolysis. This results in an inflammatory reaction and clearing of the adipose tissue remnants by macrophages. Deoxycholic acid's actions are reduced by albumin and tissue-associated proteins, therefore its effect is limited to protein-poor subcutaneous fat tissue. Protein-rich tissues like muscle and skin are unaffected by deoxycholic acid, contributing to its safety profile. Deoxycholic acid is a cytolytic agent. The physiologic effect of deoxycholic acid is by means of decreased cell membrane integrity. Deoxycholic acid inhibits miR-21 expression in primary rat hepatocytes in a dose-dependent manner, and increases miR-21 pro-apoptotic target programmed cell death 4 (PDCD4) and apoptosis. Deoxycholic acid decreases NF-κB activity, shown to represent an upstream mechanism leading to modulation of the miR-21/PDCD4 pathway.
Status:
US Approved Rx
(2022)
Source:
ANDA204934
(2022)
Source URL:
First marketed in 1937
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.
Status:
US Approved Rx
(2023)
Source:
ANDA214484
(2023)
Source URL:
First marketed in 1937
Source:
Dexedrine by Smith Kline French
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED). After oral administration, lisdexamfetamine dimesylate is rapidly absorbed from the gastrointestinal tract and converted to dextroamphetamine, which is responsible for the drug’s activity. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. Most common adverse reactions in children, adolescents and/or adults with ADHD were anorexia, anxiety, decreased appetite, decreased weight, diarrhea, dizziness, dry mouth, irritability, insomnia, nausea, upper abdominal pain, and vomiting. Agents that alter urinary pH can alter blood levels of amphetamine. Acidifying agents decrease amphetamine blood levels, while alkalinizing agents increase amphetamine blood levels. Needs to adjust Lisdexamfetamine dosage accordingly.
Status:
US Approved Rx
(2022)
Source:
ANDA215634
(2022)
Source URL:
First marketed in 1934
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Progesterone is indicated in amenorrhea and abnormal uterine bleeding due to hormonal imbalance in the absence of organic pathology, such as submucous fibroids of uterine cancer. Progesterone, converted from pregnenolone, also serves as an intermediate in the biosynthesis of gonadal steroid hormones and adrenal corticosteroids. Progesterone is a naturally occurring steroid that is secreted by the ovary, placenta, and adrenal gland. In the presence of adequate estrogen, progesterone transforms a proliferative endometrium into a secretory endometrium. Progesterone is necessary to increase endometrial receptivity for implantation of an embryo. Once an embryo is implanted, progesterone acts to maintain a pregnancy. Progesterone shares the pharmacological actions of the progestins. Progesterone binds to the progesterone and estrogen receptors. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progesterone will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. In women who have adequate endogenous estrogen, progesterone transforms a proliferative endometrium into a secretory one. Progesterone is metabolized primarily by the liver largely to pregnanediols and pregnanolones. Pregnanediols and pregnanolones are conjugated in the liver to glucuronide and sulfate metabolites. Progesterone metabolites that are excreted in the bile may be deconjugated and may be further metabolized in the gut via reduction, dehydroxylation, and epimerization. Common progesterone side effects may include: drowsiness, dizziness; breast pain; mood changes; headache; constipation, diarrhea, heartburn; bloating, swelling in your hands or feet; joint pain; hot flashes; or vaginal discharge.
Status:
US Approved Rx
(1982)
Source:
ANDA088072
(1982)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Status:
US Approved Rx
(2015)
Source:
ANDA078830
(2015)
Source URL:
First marketed in 1899
Class (Stereo):
CHEMICAL (ABSOLUTE)
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
Status:
US Approved OTC
Source:
21 CFR 358.610 pediculicide piperonyl butoxide
Source URL:
First approved in 2000
Source:
RID MOUSSE by BAYER HEALTHCARE LLC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Piperonyl butoxide (PBO) is an organic compound used as a component of pesticide formulations. It is a waxy white solid. It is a semisynthetic derivative of safrole. It is used for the treatment of head, pubic (crab), and body lice. Piperonyl butoxide is a synergist. It has no pesticidal activity of its own, but acts to increase the activity of pesticides such as carbamates, pyrethrins, pyrethroids, and rotenone. PBO acts as an insecticide synergist by inhibiting the natural defense mechanisms of the insect, the most important of which is the Mixed Function Oxidase system, also known as the cytochrome P-450 system. The MFO system is the primary route of detoxification in insects, and causes the oxidative breakdown of insecticides like pyrethrins and the synthetic pyrethroids - thus when PBO is added, higher insecticide levels remain in the insect to exercise their lethal effect. An important consequence of this property is that, by enhancing the activity of a given insecticide, less may be used to achieve the same result. PBO does not appear to have a significant effect on the MFO system in humans. Skin Sensitization PBO has a low acute toxicity by oral, inhalation and dermal routes. It is minimally irritating to the eyes and skin. It is a not a dermal sensitizer. No evidence suggests that PBO disrupts the normal functioning of the endocrine system. This includes the recently developed data to assess the possible interaction of PBO with the endocrine system.
Status:
US Approved OTC
Source:
21 CFR 333.210(c) antifungal miconazole nitrate
Source URL:
First approved in 1974
Source:
MONISTAT-DERM by INSIGHT PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Miconazole is a synthetic imidazole derivative, a topical antifungal agent for use in the local treatment of vaginal, and skin and nail infections due to yeasts and dermatophytes. It is particularly active against Candida spp., Trichophyton spp., Epidermophyton spp., Microsporum spp. and Pityrosporon orbiculare (Malassezia furfur), but also possesses some activity against Gram-positive bacteria. It binds to the heme moiety of the fungal cytochrome P-450 dependent enzyme lanosterol 14-alpha-demethlyase. Inhibits 14-alpha-demethlyase, blocks formation of ergosterol and leads to the buildup of toxic methylated 14-a-sterols. Miconazole also affects the synthesis of triglycerides and fatty acids and inhibits oxidative and peroxidative enzymes, increasing the amount of active oxygen species within the cell.
Status:
US Approved OTC
Source:
21 CFR 341.16(f) cough/cold:bronchodilator racephedrine hydrochloride
Source URL:
First approved in 1961
Source:
CHOLARACE RACEPHEDRINE HYDROCHLORIDE by WC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Racephedrine in combination with theophylline, phenobarbital was used to treat bronchial asthma. However, its application was substituted more effective agent. In addition, FDA has reviewed the final monograph for over-the-counter bronchodilator drug products to add additional warnings and to revise the indications in the labeling of products containing racephedrine hydrochloride.