{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "pantothenic acid" in Related Substance Name (exact match)
Status:
US Previously Marketed
Source:
VITAPED by HOSPIRA
(1993)
Source URL:
First marketed in 1937
Source:
Calcium pentothate
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pantothenic acid (known as Vitamin B5) is a water-soluble member of the B-vitamin family that is converted into 4’-phosphopantetheine, which is then converted to co-enzyme A (CoA) via adenosine triphosphate. Pantothenic acid regulates epidermal barrier function and keratinocytes differentiation via CoA metabolism. Pantothenic acid is incorporated into co-enzyme A and protects cells against peroxidative damage by increasing the level of glutathione. A recent feasibility study has also shown that daily oral supplementation of a nutritional agent containing pantothenic acid for 8 weeks was feasible and safe. It was discovered the different pharmacological implementation of pantothenic acid, such as treatment of acne, obesity. Existed some reports, mentioned efficacy using pantothenic acid in systemic lupus erythematosus. Significant reduction in morning stiffness, degree of disability, and severity of pain was reported for persons taking pantothenic acid in case of osteoarthritis and rheumatoid arthritis. Vitamin B5 may increase the effects of a group of drugs called cholinesterase inhibitors, which are used to treat Alzheimer's disease. That might lead to severe side effects.
Status:
Possibly Marketed Outside US
Source:
21 CFR 352
(2018)
Source URL:
First approved in 2018
Source:
21 CFR 352
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Status:
Possibly Marketed Outside US
Source:
21 CFR 347
(2016)
Source URL:
First approved in 2016
Source:
21 CFR 347
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Allergenic Extract
(1972)
Source:
BLA102192
(1972)
Source URL:
First approved in 1972
Source:
BLA102192
Source URL:
Class:
STRUCTURALLY DIVERSE
Status:
US Approved Rx
(1998)
Source:
ANDA064210
(1998)
Source URL:
First approved in 1946
Source:
STREPTOMYCIN SULFATE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Streptomycin is a water-soluble aminoglycoside derived from Streptomyces griseus. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like Streptomycin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically Streptomycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes.
Streptomycin is indicated for the treatment of tuberculosis. May also be used in combination with other drugs to treat tularemia (Francisella tularensis), plague (Yersia pestis), severe M. avium complex, brucellosis, and enterococcal endocarditis (e.g. E. faecalis, E. faecium).
Status:
US Previously Marketed
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Viomycin is a basic peptide antibiotic, which is among the most effective agents against multidrug-resistant tuberculosis. The tuberactinomycins, such as Viomycin, target bacterial ribosomes, binding RNA and disrupting bacterial protein biosynthesis. Specifically, viomycin binds to a site on the ribosome which lies at the interface between helix 44 of the small ribosomal subunit and helix 69 of the large ribosomal subunit. The structures of this complexes suggest that the viomycin inhibits translocation by stabilizing the tRNA in the A site in the pretranslocation state.
Status:
US Previously Marketed
Source:
KECTIL DIHYDROSTREPTOMYCIN SULFATE by BRISTOL LABS
(1961)
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dihydrostreptomycin is an antibiotic compound derived from streptomycin by reduction with hydrogen. The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins, in addition it binds mechanosensitive channel of large conductance (MscL) and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell. It has about the same degree of antibacterial activity as streptomycin, but it is less effective against some gram-negative microorganisms. Because it has a higher risk of irreversible deafness, and its effectiveness is no greater that that of streptomycin, dihydrostreptomycin is no longer used clinically. To date dihydrostreptomycin is approved for veterinary use to treat bacterial infections.
Status:
US Previously Marketed
Source:
VITAPED by HOSPIRA
(1993)
Source URL:
First marketed in 1937
Source:
Calcium pentothate
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pantothenic acid (known as Vitamin B5) is a water-soluble member of the B-vitamin family that is converted into 4’-phosphopantetheine, which is then converted to co-enzyme A (CoA) via adenosine triphosphate. Pantothenic acid regulates epidermal barrier function and keratinocytes differentiation via CoA metabolism. Pantothenic acid is incorporated into co-enzyme A and protects cells against peroxidative damage by increasing the level of glutathione. A recent feasibility study has also shown that daily oral supplementation of a nutritional agent containing pantothenic acid for 8 weeks was feasible and safe. It was discovered the different pharmacological implementation of pantothenic acid, such as treatment of acne, obesity. Existed some reports, mentioned efficacy using pantothenic acid in systemic lupus erythematosus. Significant reduction in morning stiffness, degree of disability, and severity of pain was reported for persons taking pantothenic acid in case of osteoarthritis and rheumatoid arthritis. Vitamin B5 may increase the effects of a group of drugs called cholinesterase inhibitors, which are used to treat Alzheimer's disease. That might lead to severe side effects.