U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
mixture
Status:
Possibly Marketed Outside US
Source:
Japan:Kanamycin Monosulfate
Source URL:
First approved in 2022
Source:
Kanamycin Sulfates by KDG Impresa LLC, Aqion
Source URL:

Class:
MIXTURE



Kanamycin (a mixture of kanamycin A, B and C) is an aminoglycoside bacteriocidal antibiotic, available in oral, intravenous, and intramuscular forms, and used to treat a wide variety of infections. It is effective against Gram-negative bacteria and certain Gram-positive bacteria. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Serious side effects include tinnitus or loss of hearing, toxicity to kidneys, and allergic reactions to the drug. Mixing of an aminoglycoside with beta-lactam-type antibiotics (penicillins or cephalosporins) may result in a significant mutual inactivation. Even when an aminoglycoside and a penicillin-type drug are administered separately by different routes, a reduction in aminoglycoside serum half-life or serum levels has been reported in patients with impaired renal function and in some patients with normal renal function.
Amikacin, USP (as the sulfate) is a semi-synthetic aminoglycoside antibiotic derived from kanamycin. Amikacin "irreversibly" binds to specific 30S-subunit proteins and 16S rRNA. Amikacin inhibits protein synthesis by binding to the 30S ribosomal subunit to prevent the formation of an initiation complex with messenger RNA. Specifically Amikacin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Amikacin is used for short-term treatment of serious infections due to susceptible strains of Gram-negative bacteria, including Pseudomonas species, Escherichia coli, species of indole-positive and indole-negative Proteus, Providencia species, Klebsiella-Enterobacter-Serratia species, and Acinetobacter (Mima-Herellea) species. Amikacin may also be used to treat Mycobacterium avium and Mycobacterium tuberculosis infections. Amikacin was used for the treatment of gram-negative pneumonia.
mixture
Status:
Possibly Marketed Outside US
Source:
Japan:Kanamycin Monosulfate
Source URL:
First approved in 2022
Source:
Kanamycin Sulfates by KDG Impresa LLC, Aqion
Source URL:

Class:
MIXTURE



Kanamycin (a mixture of kanamycin A, B and C) is an aminoglycoside bacteriocidal antibiotic, available in oral, intravenous, and intramuscular forms, and used to treat a wide variety of infections. It is effective against Gram-negative bacteria and certain Gram-positive bacteria. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Serious side effects include tinnitus or loss of hearing, toxicity to kidneys, and allergic reactions to the drug. Mixing of an aminoglycoside with beta-lactam-type antibiotics (penicillins or cephalosporins) may result in a significant mutual inactivation. Even when an aminoglycoside and a penicillin-type drug are administered separately by different routes, a reduction in aminoglycoside serum half-life or serum levels has been reported in patients with impaired renal function and in some patients with normal renal function.