U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 25 results


Class (Stereo):
CHEMICAL (ABSOLUTE)

Setmelanotide (RM-493), is an investigational, first-in-class melanocortin-4 receptor (MC4R) agonist in development for the treatment of rare genetic disorders of obesity. Setmelanotide is thought to activate the MC4R, part of a key biological pathway in humans that regulates weight by increasing energy expenditure and reducing appetite. Variants in genes within the MC4 pathway are associated with unrelenting hunger, known as hyperphagia, and severe, early-onset obesity. Setmelanotide is a potential replacement therapy that may restore lost activity in the MC4 pathway, reestablishing weight and appetite control in patients with these rare genetic disorders.

Class (Stereo):
CHEMICAL (MIXED)



Saxagliptin is an orally active hypoglycemic (anti-diabetic drug) of the new dipeptidyl peptidase-4 (DPP-4) inhibitor class of drugs. FDA approved on July 31, 2009. Saxagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor antidiabetic for the treatment of type 2 diabetes. DPP-4 inhibitors are a class of compounds that work by affecting the action of natural hormones in the body called incretins. Incretins decrease blood sugar by increasing consumption of sugar by the body, mainly through increasing insulin production in the pancreas, and by reducing production of sugar by the liver. [Bristol-Myers Squibb Press Release] DPP-4 is a membrane associated peptidase which is found in many tissues, lymphocytes and plasma. DPP-4 has two main mechanisms of action, an enzymatic function and another mechanism where DPP-4 binds adenosine deaminase, which conveys intracellular signals via dimerization when activated. Saxagliptin forms a reversible, histidine-assisted covalent bond between its nitrile group and the S630 hydroxyl oxygen on DPP-4. The inhibition of DPP-4 increases levels active of glucagon like peptide 1 (GLP-1), which inhibits glucagon production from pancreatic alpha cells and increases production of insulin from pancreatic beta cells.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dapagliflozin (trade name Farxiga in the U.S. and Forxiga in the EU and Russia) is a drug of the gliflozin class, developed by Bristol-Myers Squibb in partnership with AstraZeneca. Farxiga is a sodium-glucose cotransporter 2 (SGLT2) inhibitor indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.
Metformin is the most widely used drug to treat type 2 diabetes, and is one of only two oral antidiabetic drugs on the World Health Organization (WHO) list of essential medicines. Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. However, we still do not completely understand its mechanisms of action. The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The use of metformin, the most commonly prescribed drug for type 2 diabetes, was repeatedly associated with the decreased risk of the occurrence of various types of cancers, especially of pancreas and colon and hepatocellular carcinoma.
Status:
First marketed in 1921
Source:
Lactic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Sodium lactate is primarily indicated as a source of bicarbonate for prevention or control of mild to moderate metabolic acidosis in patients with restricted oral intake whose oxidative processes are not seriously impaired. Sodium Lactate is most commonly associated with an E number of “E325” Sodium Lactate blends are commonly used in meat and poultry products to extend shelf life and increase food safety. They have a broad antimicrobial action and are effective at inhibiting most spoilage and pathogenic bacteria. In addition sodium lactate is used in cosmetics as a humectant, providing moisture.
Status:
First marketed in 0652
Source:
alcohol
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Alcohols exhibit rapid broad-spectrum antimicrobial activity against vegetative bacteria (including mycobacteria), viruses, and fungi but are not sporicidal. They are, however, known to inhibit sporulation and spore germination, but this effect is reversible. Because of the lack of sporicidal activity, alcohols are not recommended for sterilization but are widely used for both hard-surface disinfection and skin antisepsis. Lower concentrations may also be used as preservatives and to potentiate the activity of other biocides. Many alcohol products include low levels of other biocides (in particular chlorhexidine), which remain on the skin following evaporation of the alcohol, or excipients (including emollients), which decrease the evaporation time of the alcohol and can significantly increase product efficacy. Ethanol in combination with: chlorhexidine gluconate 1% was approved to use in surgical hand antiseptic. It significantly reduces the number of microorganisms on the hands and forearms prior to surgery or patient care. Ethanol is also used as a co-solvent to dissolve many insoluble drugs and to serve as a mild sedative in some medicinal formulations. Ethanol is metabolized by the hepatic enzyme alcohol dehydrogenase. Ethanol affects the brain’s neurons in several ways. It alters their membranes as well as their ion channels, enzymes, and receptors. Alcohol also binds directly to the receptors for acetylcholine, serotonin, GABA, and the NMDA receptors for glutamate. The sedative effects of ethanol are mediated through binding to GABA receptors and glycine receptors (alpha 1 and alpha 2 subunits). It also inhibits NMDA receptor functioning. In its role as an anti-infective, ethanol acts as an osmolyte or dehydrating agent that disrupts the osmotic balance across cell membranes.
Status:
Investigational
Source:
NCT02003092: Phase 1/Phase 2 Interventional Terminated Solid Tumor
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Status:
Investigational
Source:
INN:ivaltinostat [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

CG-200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed by CrystalGenomics, Inc for treatment of various hematological and solid cancers. Combinations of CG-200745 with SN38 (the active form of irinotecan), or oxaliplatin were more effective than the agents alone when used to inhibit the growth of HCT116 cells. The protein expressions of acetyl-H3, p21, caspase-3, -8, and -9, PARP, and XIAP were affected in a time- and dose-dependent manner in HCT116 cells treated with the CG-200745 alone or combined CG-200745 and SN-38. In HCT116 xenografts, the HDACI CG-200745 in combination with irinotecan dramatically inhibited tumor growth without showing additive toxicity.
Status:
Investigational
Source:
NCT01724320: Phase 1 Interventional Unknown status Solid Tumors
(2012)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Conditions:

PTX-008 (OTX008) is a calixarene-based compound and galectin-1 (Gal-1) inhibitor with potential anti-angiogenic and antineoplastic activities. Upon subcutaneous administration, galectin-1 inhibitor OTX008 binds Gal-1 which leads to Gal-1 oxidation and proteosomal degradation through a not yet fully elucidated mechanism, and eventually downregulates Gal-1. This decreases tumor cell growth and inhibits angiogenesis. Gal-1, a multifunctional carbohydrate-binding protein, is often overexpressed on tumor cells and plays a key role in cancer cell proliferation, apoptosis, tumor angiogenesis and evasion of immune responses. PTX-008 had been in phase I clinical trials for the treatment of solid tumours. This compound was originally discovered by University of Minnesota and PepTx, then licensed to OncoEthix (acquired by Merck Sharp & Dohme in 2014). However, no recent developments has been reported.