U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for phenyl aminosalicylate

 
Status:
US Previously Marketed
Source:
PHENY-PAS-TEBAMIN by PHARM RES ASSOC
(1961)
Source URL:
First approved in 1959
Source:
Pheny-PAS-Tebamin by Purdue Frederick
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Phenyl Aminosalicylate is the phenyl ester of para-aminosalicylic acid, reported to have less side effects than simple salts of para-aminosalicylic acid. It’s a second-line antituberculosis drug with a high incidence of hypersensitivity reactions and gastrointestinal upset.
Status:
US Previously Marketed
Source:
PHENY-PAS-TEBAMIN by PHARM RES ASSOC
(1961)
Source URL:
First approved in 1959
Source:
Pheny-PAS-Tebamin by Purdue Frederick
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Phenyl Aminosalicylate is the phenyl ester of para-aminosalicylic acid, reported to have less side effects than simple salts of para-aminosalicylic acid. It’s a second-line antituberculosis drug with a high incidence of hypersensitivity reactions and gastrointestinal upset.
Momelotinib (CYT387) is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases. Momelotinib is developing by Gilead Sciences for the oral treatment of pancreatic and non-small cell lung cancers, and myeloproliferative disorders (including myelofibrosis, essential thrombocythaemia and polycythaemia vera).
APD-334 (Etrasimod) was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure. APD-334 has therapeutic potential in immune and inflammatory-mediated diseases such as ulcerative colitis, Crohn’s disease, and atopic dermatitis.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Elacestrant (ER-306323 or RAD 1901 [6R)-6-(2-(N-(4-(2-(ethylamino)ethyl)benzyl)-N-ethylamino)-4-methoxyphenyl)-5,6,7,8-tetrahydronaphthalen-2-ol dihydrochloride]) is a selective estrogen receptor (ER) degrader. Elacestrant induces the degradation of ER, inhibits ER-mediated signaling and growth of ER+ breast cancer cell lines in vitro and in vivo, and significantly inhibits tumor growth in breast cancer xenograft models. Elacestrant has the potential for use as a single agent or in combination with other therapies for the treatment of breast cancer. Elacestrant is being developed by Radius Health, for the treatment of estrogen receptor positive breast cancer.
Sotagliflozin (LX4211) is an orally-delivered small molecule compound that is currently in development for the treatment of type 1 and type 2 diabetes mellitus. Sotagliflozin (LX4211) inhibits both sodium-glucose cotransporter type 2, or SGLT2, a transporter responsible for most of the glucose reabsorption performed by the kidney, and sodium-glucose cotransporter type 1, or SGLT1, a transporter responsible for glucose and galactose absorption in the gastrointestinal tract, and to a lesser extent than SGLT2, glucose reabsorption in the kidney. Combining SGLT1 and SGLT2 inhibition in a single molecule would provide complementary insulin-independent mechanisms to treat diabetes.
Quizartinib (AC220) is an orally bioavailable, small molecule receptor tyrosine kinase inhibitor that is being developed by Daiichi Sankyo Company (previously Ambit Biosciences) and Astellas Pharma as a treatment for acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and advanced solid tumours. The highest affinity target identified for Quizartinib was FLT3. The only other kinases with binding constants within 10-fold that for FLT3 were the closely related receptor tyrosine kinases KIT, PDGFRA, PDGFRB, RET, and CSF1R. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Mitapivat, also known as PKM2 activator 1020, is an activator of a pyruvate kinase PKM2, an enzyme involved in glycolysis. It was disclosed in a patent publication WO 2011002817 A1 as compound 78.