{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
amikacin
to a specific field?
There is one exact (name or code) match for amikacin
Status:
US Approved Rx
(2016)
Source:
ANDA203323
(2016)
Source URL:
First approved in 1976
Source:
AMIKIN by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Amikacin, USP (as the sulfate) is a semi-synthetic aminoglycoside antibiotic derived from kanamycin. Amikacin "irreversibly" binds to specific 30S-subunit proteins and 16S rRNA. Amikacin inhibits protein synthesis by binding to the 30S ribosomal subunit to prevent the formation of an initiation complex with messenger RNA. Specifically Amikacin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Amikacin is used for short-term treatment of serious infections due to susceptible strains of Gram-negative bacteria, including Pseudomonas species, Escherichia coli, species of indole-positive and indole-negative Proteus, Providencia species, Klebsiella-Enterobacter-Serratia species, and Acinetobacter (Mima-Herellea) species. Amikacin may also be used to treat Mycobacterium avium and Mycobacterium tuberculosis infections. Amikacin was used for the treatment of gram-negative pneumonia.
Status:
US Approved Rx
(2016)
Source:
ANDA203323
(2016)
Source URL:
First approved in 1976
Source:
AMIKIN by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Amikacin, USP (as the sulfate) is a semi-synthetic aminoglycoside antibiotic derived from kanamycin. Amikacin "irreversibly" binds to specific 30S-subunit proteins and 16S rRNA. Amikacin inhibits protein synthesis by binding to the 30S ribosomal subunit to prevent the formation of an initiation complex with messenger RNA. Specifically Amikacin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Amikacin is used for short-term treatment of serious infections due to susceptible strains of Gram-negative bacteria, including Pseudomonas species, Escherichia coli, species of indole-positive and indole-negative Proteus, Providencia species, Klebsiella-Enterobacter-Serratia species, and Acinetobacter (Mima-Herellea) species. Amikacin may also be used to treat Mycobacterium avium and Mycobacterium tuberculosis infections. Amikacin was used for the treatment of gram-negative pneumonia.
Status:
US Approved Rx
(2008)
Source:
ANDA065441
(2008)
Source URL:
First approved in 1996
Source:
MAXIPIME by HOSPIRA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefepime is a fourth-generation cephalosporin antibiotic, which was developed in 1994. Cefepime has a broad spectrum in vitro activity that encompasses a wide range of Gram-positive and Gram-negative bacteria. Within bacterial cells, the molecular targets of cefepime are the penicillin binding proteins (PBP). It is FDA approved for the treatment of pneumonia, febrile neutropenia, uncomplicated UTI, uncomplicated skin infection and complicated intraabdominal infections. Common adverse reactions include rash, hypophosphatemia, diarrhea. Cefepime is metabolized to N-methylpyrrolidine (NMP) which is rapidly converted to the N-oxide (NMP-N-oxide). Urinary recovery of unchanged cefepime accounts for approximately 85% of the administered dose. Less than 1% of the administered dose is recovered from urine as NMP, 6.8% as NMP-N-oxide, and 2.5% as an epimer of cefepime. Because renal excretion is a significant pathway of elimination, patients with renal dysfunction and patients undergoing hemodialysis require dosage adjustment.
Status:
US Approved Rx
(1981)
Source:
NDA050555
(1981)
Source URL:
First approved in 1975
Source:
NEBCIN by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Tobramycin, an aminoglycoside antibiotic obtained from cultures of Streptomyces tenebrarius, it is effective against gram-negative bacteria, especially the pseudomonas species. Tobramycin is used in combination with other antibiotics to treat urinary tract infections, gynecologic infections, peritonitis, endocarditis, pneumonia, bacteremia and sepsis, respiratory infections including those associated with cystic fibrosis, osteomyelitis, and diabetic foot and other soft-tissue infections. It acts primarily by disrupting protein synthesis, leading to altered cell membrane permeability, progressive disruption of the cell envelope, and eventual cell death. Tobramycin has in vitro activity against a wide range of gram-negative organisms including Pseudomonas aeruginosa. Tobramycin binds irreversibly to one of two aminoglycoside binding sites on the 30 S ribosomal subunit, inhibiting bacterial protein synthesis. Tobramycin may also destabilize bacterial memebrane by binding to 16 S 16 S r-RNA. An active transport mechanism for aminoglycoside uptake is necessary in the bacteria in order to attain a significant intracellular concentration of tobramycin. KITABIS PAK (co-packaging of tobramycin inhalation solution and PARI LC PLUS Reusable Nebulizer) is indicated for the management of cystic fibrosis in adults and pediatric patients 6 years of age and older with P. aeruginosa.
Status:
US Approved Rx
(1998)
Source:
ANDA064210
(1998)
Source URL:
First approved in 1946
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Streptomycin is a water-soluble aminoglycoside derived from Streptomyces griseus. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like Streptomycin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically Streptomycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes.
Streptomycin is indicated for the treatment of tuberculosis. May also be used in combination with other drugs to treat tularemia (Francisella tularensis), plague (Yersia pestis), severe M. avium complex, brucellosis, and enterococcal endocarditis (e.g. E. faecalis, E. faecium).
Status:
US Previously Marketed
Source:
NETROMYCIN by SCHERING
(1983)
Source URL:
First approved in 1983
Source:
NETROMYCIN by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Netilmicin is a semisynthetic, water soluble antibiotic of the aminoglycoside group, produced by the fermentation of Micromonospora inyoensis, a species of actinomycete. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. It is active at low concentrations against a wide variety of pathogenic bacteria including Escherichia coli, bacteria of the Klebsiella-Enterobacter-Serratia group, Citrobacter sp., Proteus sp. (indole-positive and indole-negative), including Proteus mirabilis, P. morganii, P. rettgrei, P. vulgaris, Pseudomonas aeruginosa and Neisseria gonorrhoea. Netilmicin is also active in vitro against isolates of Hemophilus influenzae, Salmonella sp., Shigella sp. and against penicillinase and non-penicillinase-producing Staphylococcus including methicillin-resistant strains. Some strains of Providencia sp., Acinetobacter sp. and Aeromonas sp. are also sensitive to netilmicin. Many strains of the above organisms which are found to be resistant to other aminoglycosides, such as kanamycin, gentamicin, tobramycin and sisomicin, are susceptible to netilmicin in vitro. Occasionally, strains have been identified which are resistant to amikacin but susceptible to netilmicin. The combination of netilmicin and penicillin G has a synergistic bactericidal effect against most strains of Streptococcus faecalis (enterococcus). The combined effect of netilmicin and carbenicillin or ticarcillin is synergistic for many strains of Pseudomonas aeruginosa. In addition, many isolates of Serratia, which are resistant to multiple antibiotics, are inhibited by synergistic combinations of netilmicin with carbenicillin, azlocillin, mezlocillin, cefamandole, cefotaxime or moxalactam. Netilmicin "irreversibly" binds to specific 30S-subunit proteins and 16S rRNA. Specifically netilmicin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes, leaving the bacterium unable to synthesize proteins vital to its growth.
Status:
US Previously Marketed
Source:
KANAMYCIN SULFATE by PHARMAFAIR
(1987)
Source URL:
First approved in 1958
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Kanamycin A is aminoglycoside anti-bacterial agent. Active against many strains of Gram-negative bacteria and Gram-positive Staphylococcus aureus and epidermis. Some strains of Mycobacterium bacterium are sensitive. Most active in alkaline solution. It binds to bacterial ribosomes and reduces mRNA translation hence reduces protein biosynthesis. However, it also exhibits some toxic effects towards mammalian cells.
Status:
US Approved Rx
(2013)
First approved in 1958
Class:
MIXTURE