U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 9391 - 9400 of 10111 results

Colistin sulfate is a polypeptide antibiotic which penetrates into and disrupts the bacterial cell membrane. It is a cyclic polypeptide antibiotic from Bacillus colistinus. It is composed of Polymyxins E1 and E2 (or Colistins A, B, and C). Colistin was first isolated in Japan in 1949 from a flask of fermenting Bacillus polymyxa var. colistinus and became available for clinical use in 1959. The following local adverse events have been reported with topical corticosteroids, especially under occlusive dressings: burning, itching, irritation, dryness, folliculitis, hypertrichosis, etc. Healthcare providers had largely stopped using colistin in the 1970s because of its toxicity. However, with antibacterial resistance on the rise, colistin is increasingly being used today to treat severe, multidrug-resistant Gram-negative bacterial infections, particularly among intensive care-based patients. The problem with re-introducing an older drug, such as colistin, though, is that techniques for evaluating new drugs have evolved since the 1950s, and therefore, little is known about the dose needed to effectively fight infection while limiting the potential emergence of antimicrobial resistance and reducing potentially toxic side effects. More data are needed to guide optimal use of these older medications. An international team of NIAID-funded researchers is making progress in obtaining better dosing information about colistin and how best to use the antibiotic to treat Gram-negative bacterial infections. Resistance to colistin is rare. The first colistin-resistance gene that is carried in a plasmid and can be transferred between bacterial strains was described in 2016. This plasmid-borne mcr-1 gene has since been isolated in China, Europeand the United States.

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Iothalamic Acid is an iodine-containing organic anion used as a radiocontrast agent. It is available as sodium iothalamate (Iothalamate sodium) and meglumine iothalamate (Iothalmate meglumine). It can be administered intravenously or intravesically (into the urinary bladder). Iothalamate is indicated to visualize specific regions of the vascular system and blood flow in these areas to help in the diagnosis and evaluation of neoplasms (known or suspected) or vascular diseases (congenital or acquired) that may cause changes in normal vascular anatomy or physiology. Iothalamate meglumine injection is indicated for use in cerebral angiography, peripheral arteriography or venography, arterial digital subtraction angiography1 , and intravenous digital subtraction angiography. Iothalamate meglumine and iothalamate sodium injection is indicated for use in selective coronary arteriography, selective renal arteriography, and in intravenous digital subtraction angiography. othalamate meglumine and iothalamate sodium injection and iothalamate sodium injection are indicated to visualize the aorta and its major branches. However, the injection of iothalamate meglumine and iothalamate sodium is preferred because it generally causes less severe hemodynamic, neurotoxic, and cardiotoxic effects than the individual injection of iothalamate sodium. Radioactive formulation is also available as sodium iothalamate I-125 Injection (GLOFIL-125). It is indicated for evaluation of glomerular filtration in the diagnosis or monitoring of patients with renal disease.
Methylprednisolone is a prednisolone derivative with similar anti-inflammatory and immunosuppressive action. It is adjunctive therapy for short-term administration in rheumatoid arthritis. It is indicated in the following conditions: endocrine disorders, rheumatic disorders, collagen diseases, allergic states etc. Methylprednisolone is marketed in the USA and Canada under the brand names Medrol and Solu-Medrol. Methylprednisolone is a GR receptor agonist.
L-arginine is a nonessential amino acid that may play an important role in the treatment of cardiovascular disease due to its antiatherogenic, anti-ischemic, antiplatelet, and antithrombotic properties. It has been promoted as a growth stimulant and as a treatment for erectile dysfunction in men. L-arginine is a nonessential amino acid that may play an important role in the treatment of heart disease due to its block arterial plaque buildup, blood clots, platelet clumping, and to increase blood flow through the coronary artery. L-arginine is commonly sold as a health supplement claiming to improve vascular health and treat erectile dysfunction in men. L-arginine, which is promoted as a human growth stimulant, has also been used in bodybuilding. In the 1800s, it was first isolated from animal horn.
Status:
First approved in 1954

Class (Stereo):
CHEMICAL (ACHIRAL)


This compound belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. A commonly used x-ray contrast medium. Used, alone or in combination, for a wide variety of diagnostic imaging methods, including angiography, urography, cholangiography, computed tomography, hysterosalpingography, and retrograde pyelography. It can be used for imaging the gastrointestinal tract in patients allergic to barium. Radiopaque agents are drugs used to help diagnose certain medical problems. They contain iodine, which blocks x-rays. Depending on how the radiopaque agent is given, it localizes or builds up in certain areas of the body. The resulting high level of iodine allows the x-rays to make a "picture" of the area. The areas of the body in which the radiopaque agent localizes will appear white on the x-ray film. This creates the needed distinction, or contrast, between one organ and other tissues.
Status:
First approved in 1954

Class (Stereo):
CHEMICAL (ACHIRAL)


This compound belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. A commonly used x-ray contrast medium. Used, alone or in combination, for a wide variety of diagnostic imaging methods, including angiography, urography, cholangiography, computed tomography, hysterosalpingography, and retrograde pyelography. It can be used for imaging the gastrointestinal tract in patients allergic to barium. Radiopaque agents are drugs used to help diagnose certain medical problems. They contain iodine, which blocks x-rays. Depending on how the radiopaque agent is given, it localizes or builds up in certain areas of the body. The resulting high level of iodine allows the x-rays to make a "picture" of the area. The areas of the body in which the radiopaque agent localizes will appear white on the x-ray film. This creates the needed distinction, or contrast, between one organ and other tissues.
Status:
First approved in 1954

Class (Stereo):
CHEMICAL (ABSOLUTE)


This compound belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. A commonly used x-ray contrast medium. Used, alone or in combination, for a wide variety of diagnostic imaging methods, including angiography, urography, cholangiography, computed tomography, hysterosalpingography, and retrograde pyelography. It can be used for imaging the gastrointestinal tract in patients allergic to barium. Radiopaque agents are drugs used to help diagnose certain medical problems. They contain iodine, which blocks x-rays. Depending on how the radiopaque agent is given, it localizes or builds up in certain areas of the body. The resulting high level of iodine allows the x-rays to make a "picture" of the area. The areas of the body in which the radiopaque agent localizes will appear white on the x-ray film. This creates the needed distinction, or contrast, between one organ and other tissues.
Edetic acid (EDTA) is a chelating agent. The U.S. Food and Drug Administration (FDA) approved edetic acid chelation therapy as a treatment for lead and heavy metal poisoning. Edetic acid in form of disodium salt was withdrawn from the market due to death resulting from hypocalcemia during chelation.
Edetic acid (EDTA) is a chelating agent. The U.S. Food and Drug Administration (FDA) approved edetic acid chelation therapy as a treatment for lead and heavy metal poisoning. Edetic acid in form of disodium salt was withdrawn from the market due to death resulting from hypocalcemia during chelation.
Status:
First approved in 1948
Source:
Sodium Aminosalicylate by Various Mfrs.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



4-AMINOSALICYLIC ACID (Paser) is an anti-tuberculosis drug used to treat tuberculosis in combination with other active agents. 4-AMINOSALICYLIC ACID (Paser) is most commonly used in patients with Multi-drug Resistant TB (MDR-TB) or when isoniazid and rifampin use is not possible due to a combination of resistance and/or intolerance. There are two mechanisms responsible for aminosalicylic acid's bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in the folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slow. Secondly, the aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis.

Showing 9391 - 9400 of 10111 results